3GPP TSG RAN WG1 NB-IoT Ad-Hoc Meeting #2	R1-161958
Sophia-Antipolis, France, March 22-24, 2016

Agenda Item:	2.2.5
Source:	Huawei, HiSilicon
[bookmark: _GoBack]Title:	NB-PSS evaluation
Document for:	Discussion and decision

[bookmark: _Ref124589705][bookmark: _Ref129681862]Introduction
In this paper, three alternative short sequence based NB-PSS designs and one long sequence based NB-PSS design are compared in terms of performance and receiver complexity. The design options that are evaluated are as follows:
Short sequence 1 [2]: an identical Zadoff-Chu sequence (root index 5) is used for each NB-PSS symbol and a PN-like code cover {1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1} is applied across different PSS symbols.
Short sequence 2 [3]: a Zadoff-Chu sequence is used for each NB-PSS symbol and each sequence corresponds to a unique root index. The root indices are {1, 10, 2, 9, 3, 8, 4, 7, 5, 6, 5}.
Short sequence 3 [4]: a pair of Zadoff-Chu sequences (root index 5) are used for adjacent two NB-PSS OFDM symbols and a code cover {1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1} is applied across different PSS symbols.
Long sequence [1]: the NB-PSS is generated from two length-139 root-1 Zadoff-Chu sequences which are complex conjugate of each other, as proposed in our companion contribution [1].
A summary of the receiver algorithms proposed by the proponents of different NB-PSS design options is provided in Appendix B.
A fundamental difference between the long NB-PSS design and the short NB-PSS designs is that the former allows a low complexity receiver to be implemented based on cross-correlation which avoids performance degradation due to noise enhancement. This is because the long NB-PSS signal design uses two complex conjugate ZC sequences, which means that the two cross-correlation peak positions move in opposite directions in the presence of CFO. Therefore, the average position of the two cross-correlation peaks provides the timing estimate, while the difference in the position of the two peaks provides the CFO estimate.
In contrast, the short NB-PSS receivers essentially must choose between using a cross-correlation based approach (giving potentially good performance but with high complexity due to the need for CFO hypothesis testing) or an auto-correlation/differential based approach (giving lower complexity at the expense of degraded performance due to noise enhancement from the multiplication of input signal samples).
In this contribution, evaluations are performed for all the short NB-PSS design options and the long NB-PSS design option, in terms of both performance and complexity. Comparisons are provided based on the evaluation results.
[bookmark: _Ref129681832]NB-PSS synchronization performance
A variety of NB-PSS synchronization performance metrics are evaluated, including the signal detection rate, false alarm rate, the NB-PSS synchronization latency, etc.
The most challenging scenario, i.e. in-band deployment at 164dB MCL, is considered in the evaluation. For in-band deployment, the NB-PSS are punctured by LTE CRS (2 LTE CRS antenna ports are assumed in the evaluations). Both initial cell search and non-initial cell search are considered.
For initial cell search, the initial frequency offset is set to 28.3ppm considering the 8.3ppm channel raster offset in addition to the 20ppm local oscillator frequency offset. 2ppm initial frequency offset is assumed by non-initial cell search. The detailed simulation assumptions are shown in Table 8 in Appendix A.
In the evaluations, the successful detection is defined by the correlation exceeding the respective correlation thresholds. It should be noted that unrealistic detection criteria may lead to over-optimistic simulation results.
NB-PSS synchronization performance for initial cell search
Table 1 shows the NB-PSS synchronization performance for initial cell search based on the four NB-PSS design options (i.e. three short NB-PSS design [2][3][4] and one long NB-PSS design [1]). It can be seen that the long sequence based NB-PSS design outperforms all of the short NB-PSS design options.
[bookmark: _Ref442293778]Table 1. NB-PSS signal detection performance for initial cell search
	[bookmark: OLE_LINK1]Metrics
	Long sequence [1]
	Short sequence 1 [2]
	Short sequence 3[4]
	Short sequence 2 [3]

	
	Algorithm 1
	Algorithm 2
	Algorithm 2
	Algorithm 3
	Algorithm 2
	Algorithm 3
	Algorithm 4a
	Algorithm 4b

	NB-PSS Detection Rate
	100%
	100%
	99.08%
	3.30%
	2.30%
	1.50%
	61.70%
	5.60%

	NB-PSS False Alarm Rate
	0.00%
	0.00%
	0.90%
	0.00%
	0.00%
	0.00%
	0.30%
	0.00%

	Coarse timing error (99%)
	-6.25us ~ 6.25us
	-25.8us ~ 25.8us
	-54us ~ 54us
	-3us ~ 3us
	-115us ~ 115us
	-2.25us ~ 2.25us
	-5us ~ 5us
	-10.4us ~ 10.4us

	Coarse CFO error (99%)
	-550Hz ~ 550Hz
	-957Hz ~ 957Hz
(+N*14.12kHz)
	-4.7kHz ~ 4.7kHz
(+N*14.12kHz)
	-767Hz ~ 767Hz
(+N*14.12kHz)
	-659Hz ~ 659Hz
(+N*14.12kHz)
	-600Hz ~ 600Hz
(+N*14.12kHz)
	\
	\

	Sync time for 50 % users
	180ms
	550ms
	980ms
	Simulation duration:8 seconds
	Simulation duration:12 seconds
	Simulation duration:12 seconds
	Simulation duration:4 seconds
	Simulation duration:4 seconds

	Sync time for 90 % users
	540ms
	870ms
	2320ms
	
	
	
	
	

	Average Sync. time
	260ms
	560ms
	1224ms
	
	
	
	
	

Observation 1: The long sequence based NB-PSS design [1] outperforms all of the short sequence based NB-PSS design options [2][3][4] with respect to signal detection (100% vs. 99%), and synchronization delay (260 ms vs. 560 ms for average delay, and 540 ms vs. 870 ms at 90th percentile) for initial cell search.
NB-PSS synchronization performance for non-initial cell search
Table 3 shows the synchronization performance for non-initial cell search based on the four design options. Due to the limited initial frequency offset (i.e. 2 ppm), all the design options achieve similar signal detection rate except for short sequence 2 design with receiver algorithm 4b, which gives significantly worse performance. However, none of the short sequence design options can achieve a synchronization time shorter than 880ms time at 90th percentile. In contrast, the long sequence design only requires 280ms at 90th percentile to achieve the synchronization.

[bookmark: _Ref445822421]

Table 3. NB-PSS signal detection performance for non-initial cell search
	Metrics
	Long sequence [1]
	Short sequence 1 [2]
	Short sequence 3[4]
	Short sequence 2 [3]

	
	Algorithm 1
	Algorithm 2
	Algorithm 2
	Algorithm 3
	Algorithm 2
	Algorithm 3
	Algorithm 4a
	Algorithm 4b

	NB-PSS Detection Rate
	100.00%
	100.00%
	100.00%
	98.80%
	100.00%
	99.60%
	99.00%
	57.70%

	NB-PSS False Alarm Rate
	0.00%
	0.20%
	0.10%
	1.00%
	0.70%
	1.00%
	0.20%
	1.00%

	Coarse timing error (99%)
	-2.48us ~ 2.48us
	-23.3us ~ 23.3us
	-4.17us ~ 4.17us
	-5.42us ~ 5.42us
	-4.79us ~ 4.79us
	-6.56us ~ 6.56us
	-4.17us ~ 4.17us
	-4.17us ~ 4.17us

	Coarse CFO error (99%)
	-480Hz ~ 480Hz
	-974Hz ~ 974Hz (+N*14.12kHz)
	-820Hz ~ 820Hz (+N*14.12kHz)
	-1230Hz~1230Hz (+N*14.12kHz)
	-805Hz ~ 805Hz (+N*14.12kHz)
	-1475Hz~1475Hz (+N*14.12kHz)
	\
	\

	Sync time for 50 % users
	140ms
	520ms
	550ms
	1170ms
	580ms
	1290ms
	660ms
	Simulation duration:4 seconds

	Sync time for 90 % users
	280ms
	860ms
	880ms
	2290ms
	1020ms
	2420ms
	1950ms
	

	Average Sync. time
	153ms
	534ms
	570ms
	1336ms
	628ms
	1400ms
	900ms
	

Observation 2: The long sequence based NB-PSS design [1] achieves signal detection within a much shorter time (153 ms vs. 534 ms for average delay, and 280 ms vs. 860 ms at 90th percentile) than all the short sequence based NB-PSS design options [2][3][4] for non-initial cell search.
Device complexity
A major consideration with the sequence selection is the impact on device complexity. Due to the uncertainty of both frequency and timing, computationally intensive correlation operations must be applied for NB-PSS detection. This is very likely to dominate the overall physical layer DSP processing requirements.
In the following, comparisons for device complexity are provided between the long sequence based NB-PSS design [1] and the short sequence based NB-PSS designs.
Algorithm 1:
This algorithm performs correlation between received signal and local replica signal. The DFT-based overlap-save method [5] is used instead of the time-domain sliding correlation. Algorithm 1 is applied only for the long NB-PSS detection. For the long NB-PSS design [1], there are 2 occurrences every 20ms, with each occupying 11 symbols (189 samples with 240 kHz sampling rate). Then in each 20ms period, FFT windows are required. In each correlation computation, utilizing the DFT-based overlap-save method, there are FFT/IFFTs (operations assuming N=1024), multiplication for correlation (6144 operations) and final squaring (3072 operations). Therefore, in total, 12*(69648+6144+3072)/(20*1000)=36.9 Mop/s are required for NB-PSS detection.
As indicated in Appendix B, the timing estimate can be obtained using the average position of the two cross-correlation peaks corresponding to the two complex conjugate sequences, while the difference in the positions of the two cross-correlation peaks provides the CFO estimate. For NB-PSS detection, both cross-correlation peak magnitudes can be combined prior to applying the detection threshold, since their relative positions are known to within an uncertainty determined by the maximum CFO.

Algorithm 2:
Auto-correlations of the received sequences and recursive computations are performed by algorithm 2. 4 sub auto-correlations with different lag-size are computed then combined with proper weights. The analysis assumes 240 kHz sampling rate.
· Differential operation: Four differential operations, each of which requires 2400 complex multiplications resulting in 14400 operations every 20ms. So 14400*4=57600 operations are needed.
· Accumulation with previous data: since there are four subsets of differential data, 4*2400*2=19200 operations are needed.
· Sliding correlation in time domain:
· For short sequence 1:
Since PSS is composed of 11 identical ZC sequences. In total 2*(170+20*2400) +2*(153+18*2400) +2*(136+16*2400) +2*(119+14*2400)=327556 operations are needed. The 170, 153, 136 and 119 are the length of local sequences for different sub differential data. And 20, 18, 16 and 14 means the number of samples needed to be updated for sliding with the next sample for different sub differential data.
· For short sequence 2 and 3:
Since the 11 short sequences are not the same, so the above method cannot be used. 1024 point-FFT based algorithm is used here. Similar as algorithm 1, in each 10ms period, FFT windows are required. So 3*34824+4*(3*34824+3*6*1024) = 596088 operations are needed. 4 is used because there are 4 subsets of differential data.
· Auto-correlation and weighted combination: 3 times of auto-correlation require 3*2400*6 operations. Second multiply the data with weighted factor, which needs 3*2400*2 operations. Finally make combination among 4 differential data, which needs 3*2*2400 operations. So in total 72000 operations are needed.
· A scaling factor is applied for the accumulation. 2400*4=9600 operations are needed.
· The squaring process requires operations.

The total complexity for short sequence 1 is thus given by (57600 +19200 +327556 +72000 +9600+7200)/10000 = 49.3 Mops/sec.
The total complexity for short sequence 2 and 3 is thus given by (57600 +19200 +596088 +72000 +9600+7200)/10000 = 76.2 Mops/sec.
Algorithm 3:
Cross correlations are applied between the differential version of the received sequence and the differential of the local replica sequence. The DFT-based overlap-save method is also used to perform efficient cross correlation.1024-point FFT/IFFT and 240 kHz sampling rate are assumed, so the number of windows is .
· Differential operation: 2400 complex multiplications results in 14400 operations every 20ms.
· 1024-point FFT/IFFT results in 34824 operations. The total number of operations required by FFT/IFFT is operations.
· Multiplication of two complex sequences of length 1024 in frequency domain results in operations.
· A scaling factor is applied for the accumulation. operations are required..
· The squaring process requires operations.
The total complexity is thus given by (14400+208944+18432+9600+7200)/10000 = 25.8 Mops/sec.

Algorithm 4:
Partial correlation with a single NB-PSS and multiple frequency hypotheses is required. DFT-based algorithm is assumed. 64 point-FFT for algorithm 4a and 32 point-FFT for algorithm 4b. Take an example of algorithm 4a below.
· Assumptions:
· Assume the number of hypothesis testing of CFO is h
· 64-point FFT, each FFT/IFFT consumes x (x = 4*64*log2(64)-6*64+8) operations
· Number of correlation times within 10ms is n = 2400/(64-16+1)
· FFT
· Times of FFT operation is n, so FFT operation consumes C1 = x*n operations.
· Apply different CFO values
· Multiply a phase offset plural according to the CFO value, so this step consumes C2 = h*n*64*6 operations.
· Multiplication
· Times of multiplication is h*10*n (the 9th and 11th sequence is the same sequence, so just 10*n times multiplication operation is needed, not 11*n). Each time consumes 6*64 operations, so multiplication consumes C3 = h*10*n*6*64 operations.
· IFFT
· Times of IFFT operation is 10*n*h, so IFFT operation consumes C4 = x*10*n*h operations.
· Square
· Number of square times is 2400*10*h, so square operation consumes C5 = 3*2400*10*h operations.
· Combination
· Number of combination times is 2400*10*h, so combination operation consumes C6 = 2400*10*h operations
· Total
· Total complexity is (C1 + C2 + C3 + C4 + C5 + C6) / (10*1000) (MOPS)
For algorithm 4a, 5 frequency hypothesis are applied, so h = 5. So the total complexity is thus given by 411 (MOPS).
Similarly, the total complexity of algorithm 4b is thus given by 733 (MOPS).
A summary of the computation complexity of different design options are shown in Table 6. It can be seen that lower computation complexity is achieved by the long NB-PSS detection, exploiting the complex conjugate properties of the two PSS sequence, compared with the short NB-PSS detection.
[bookmark: _Ref445914203] Table 6. Device complexity of NB-PSS detection
	Metrics
	Long sequence [1]
	Short sequence 1 [2]
	Short sequence 3[4]
	Short sequence 2 [3]

	
	Algorithm 1
	Algorithm 2
	Algorithm 2
	Algorithm 3
	Algorithm 2
	Algorithm 3
	Algorithm 4a
	Algorithm 4b

	Complexity (in Mops/sec)
	36.9
	49.8
	76.6
	25.8
	76.6
	25.8
	441
	733

	Relative Complexity
	1x
	1.35x
	2.1x
	0.7x
	2.1x
	0.7x
	12x
	19.9x

	Memory (Bytes)
	19.2k
	48k
	48k
	9.6k
	48k
	9.6k
	24k
	24k

Observation 3: The long NB-PSS design [1], exploiting the complex conjugate properties of the two PSS sequences, achieves comparable or lower device complexity than the short NB-PSS designs [2][3][4], while also providing much superior performance.
Conclusions
In this contribution, comparisons of the long sequence based NB-PSS design and the short sequence based NB-PSS designs were performed. The following observations were made:
Observation 1: The long sequence based NB-PSS design [1] outperforms all of the short sequence based NB-PSS design options [2][3][4] with respect to signal detection (100% vs. 99%), and synchronization delay (260 ms vs. 560 ms for average delay, and 540 ms vs. 870 ms at 90th percentile) for initial cell search.
Observation 2: The long sequence based NB-PSS design [1] achieves signal detection within a much shorter time (153 ms vs. 534 ms for average delay, and 280 ms vs. 860 ms at 90th percentile) than all the short sequence based NB-PSS design options [2][3][4] for non-initial cell search.
Observation 3: The long NB-PSS design [1], exploiting the complex conjugate properties of the two PSS sequences, achieves comparable or lower device complexity than the short NB-PSS designs [2][3][4], while also providing much superior performance.
Based on these observations, we believe there are significant issues with the NB-PSS design agreements reached at RAN1#84, and the agreement needs to be revisited.
Proposal: RAN1 re-considers the long sequence based NB-PSS design. NB-PSS is based on the use of two complex-conjugate length-139 Zadoff-Chu sequences, as detailed in [1], considering the substantially superior performance while also providing comparable or lower device complexity.
[bookmark: _Ref124589665][bookmark: _Ref71620620][bookmark: _Ref124671424][bookmark: _Ref409101664][bookmark: _Ref412961601]References
[bookmark: _Ref433117068]R1-161957, “NB-PSS Signal Design”, Huawei, HiSilicon, RAN1 NB-IoT Adhoc #2.
[bookmark: _Ref445818520]“NB-PSS/SSS Design based on Short Zadoff-Chu Sequence”, Qualcomm Inc, NB-IoT email thread.
[bookmark: _Ref445818570]“NB-PSS Design”, Intel Corporation, NB-IoT email thread.
[bookmark: _Ref444763939][bookmark: _Ref439323508][bookmark: _Ref445818624][bookmark: _Ref444763949] “NB-IoT PSS/SSS Design”, LG Electronics, NB-IoT email thread.
[bookmark: _Ref439598469][bookmark: _Ref439770454]R1- 156524, “On device complexity for NB-IoT”, Intel, RAN1 #83.
[bookmark: _Ref445881619]R1-157454, “NB-IoT - Exception report latency evaluation for inband operation”, Ericsson, RAN1#83, Anaheim, USA, November 2015.
[bookmark: _Ref445888068]R1-157251, “NB IoT – Battery lifetime evaluation in guard band operation”, Nokia Networks, RAN1#83, Anaheim, USA, November 2015

Appendix A
[bookmark: _Ref409108948]Table 8. Simulation settings
	Parameter
	Value

	Carrier Frequency
	900 MHz

	Channel Model
	TU 1 Hz

	Subcarrier Spacing
	15 kHz

	SNR
	-12.6 dB1

	Sampling Frequency (Fs)
	1.92 MHz (A/D); 240 kHz (PSS detection)

	Cyclic Prefix
	10 samples for the 1st and 7th OFDM symbol within a subframe, 9 samples for the rest

	Timing offset
	Uniformly distributed between in the interval of [0,80) ms in steps of size 1/Fs

	Timing drift
	Proportionate to carrier frequency offset

	Power Boosting for NB-IOT (In-band and Guard-band)
	6 dB

	Frequency Offset
	Randomly generated as one of the values in the set of {-18 kHz, 18 kHz}, which corresponds to a frequency offset error of 20 ppm for initial cell search;
2ppm for non-initial cell search

	Raster Offset
	7.5 kHz

	NOTE1: -12.6 dB corresponds to an MCL of 164 dB for in-band and guard-band operation.

Appendix B
Algorithm 1
[bookmark: OLE_LINK3]Step 1: Low-pass filtering and down sampling
Assuming the sampling rate of received signal is 1.92 MHz, a low-pass filter with the parameters listed in table 8 is applied to the samples after ADC.
Table 9. Low-pass filter values
	Low-pass filter

	1
	-0.0017062
	14
	0.004795
	27
	0.077917
	40
	-0.01215
	53
	0.005064

	2
	-0.0026162
	15
	-3.42E-18
	28
	0.096872
	41
	-0.01969
	54
	0.002435

	3
	-0.0032927
	16
	-0.00596
	29
	0.111949
	42
	-0.02272
	55
	2.07E-18

	4
	-0.0035101
	17
	-0.01231
	30
	0.121652
	43
	-0.02184
	56
	-0.0019

	5
	-0.0030795
	18
	-0.01799
	31
	0.125
	44
	-0.01799
	57
	-0.00308

	6
	-0.0018997
	19
	-0.02184
	32
	0.121652
	45
	-0.01231
	58
	-0.00351

	7
	2.07E-18
	20
	-0.02272
	33
	0.111949
	46
	-0.00596
	59
	-0.00329

	8
	0.0024345
	21
	-0.01969
	34
	0.096872
	47
	-3.42E-18
	60
	-0.00262

	9
	0.0050643
	22
	-0.01215
	35
	0.077917
	48
	0.004795
	61
	-0.00171

	10
	0.0074276
	23
	4.48E-18
	36
	0.056906
	49
	0.007943
	　
	　

	11
	0.0090032
	24
	0.016307
	37
	0.035768
	50
	0.009298
	　
	　

	12
	0.0092975
	25
	0.035768
	38
	0.016307
	51
	0.009003
	　
	　

	13
	0.0079435
	26
	0.056906
	39
	4.48E-18
	52
	0.007428
	　
	　

After low-pass filtering, 8x down sampling is applied by uniformly abstracting one sample every eight samples.
Step 2: Signal detection and coarse synchronization
Signal detection and coarse synchronization can be done by applying cross-correlation between the down-sampled signal and local NB-PSS sequences. Since there are two sequences in NB-PSS, two separated cross-correlations are performed simultaneously.
The two peak magnitudes are combined to derive the metric used for the detection. The details of the metric generation are described in the following:
1. Calculate the power of each correlation result as

where i = 0, 1 denotes one of the two sequences, n is the index of samples. Accumulation of the correlation value is done by applying a forgotten factor as

2. Calculate the average of the correlation results within the correlation window as

where N is the number of samples within the correlation window.
3. Revise the original correlation results by subtracting the average value from the original correlation results, which can be expressed as

4. One of the metric is calculated as

5. Compare Metric1 with a pre-defined threshold Threshold_Corr. If Metric1 is below the threshold, the signal detection processing will continue. Otherwise, Metric2 is calculated according to

where Position_Peak1 and Position_Peak2 are the positions of the two peaks corresponding to the two PSS sequences, and Distance_pss1&pss2 is the correct time interval of the two PSS sequences. Compare Metric2 with a pre-defined threshold Threshold_Shift. If Metric2 is less than Threshold_Shift, it is determined as NB-PSS being detected. Otherwise, the signal detection processing will continue.
If the signal is successfully detected, coarse timing and frequency synchronization are acquired according to the positions of the two correlation peaks:
a) Determine timing position according to the positions of the two peaks. The start of the 5th subframe is estimated as the middle point between the two peaks.
b) Calculate CFO as

where 188.5 is the length of PSS sequence at 240kHz sampling rate, .
Algorithm 2

Denote the receiving signal with.
Step 1: Pass a low pass filter

, is the filter values as shown in Table 8. And the symbol ‘’ means convolution operation.
Step 2: Down-sample from 1.92 MHz to 240 kHz

Assume, then after down-sampling, we can get, and for each: .
Step 3: Differential operation
a) Differential with lag-size of 1 OFDM symbol (17 samples at 240kHz sampling rate)

, and eachis gotten by

b) Differential with lag-size of 2 OFDM symbols (34 samples at 240kHz sampling rate)

, and eachis gotten by

c) Differential with lag-size of 3 OFDM symbols (51 samples at 240kHz sampling rate)

, and eachis gotten by

d) Differential with lag-size of 4 OFDM symbols (68 samples at 240kHz sampling rate)

, and eachis gotten by

Step 4: First accumulation with previous period
For the current result and the previous result, apply

.
N means the index of PSS period.
Step 5: Sliding cross-correlation
a)
Cross-correlation with
i. Get local sequence

Apply differential operation to the code cover.

Copy each with 17 times and then we can get the local sequence.

ii. Sliding correlation

Use to perform sliding cross-correlation with, and denote the correlation result (plural) as.
b)
Cross-correlation with
iii. Get local sequence

Apply differential operation to the code cover.

Copy each with 17 times and then we can get the local sequence.

iv. Sliding correlation

Use to perform sliding cross-correlation with, and denote the correlation result (plural) as.
c)
Cross-correlation with
v. Get local sequence

Apply differential operation to the code cover.

Copy each with 17 times and then we can get the local sequence.

vi. Sliding correlation

Use to perform sliding cross-correlation with, and denote the correlation result (plural) as.
d)
Cross-correlation with
vii. Get local sequence

Apply differential operation to the code cover.

Copy each with 17 times and then we can get the local sequence.

viii. Sliding correlation

Use to perform sliding cross-correlation with, and denote the correlation result (plural) as.
Step 6: Dealing with correlation results with different differential offsets
Weighted combination between correlation results with different differential offsets.

.
Step 7: Second accumulation with previous period

, and is set to 0.9 after testing. N means the index of PSS period.
Step 8: Find the peak of correlation results
a) Get the peak value and the average value

Assume, then the peak value and the average value can be got by:

(While calculating the average value, the peak point and the points around the peak point are not included, to get better performance).
b) Make decision whether NB-PSS is detected

If the, then detection is successful, or devices will continue to receive the next 10ms. is a predefined value.
Step 9: Coarse fractional frequency offset estimation

In step 8, assume the peak point is at the position of. Then we can get a coarse fractional CFO estimation (Hz) by:

(The 14118 is got by 240 kHz /17 = 14.118 kHz).
Note: The steps are applied for short sequence 1. And for short sequence 2 and short sequence 3, the same processing steps are applied except for the step 5. Denote the corresponding processing applied to short sequence 2 and short sequence 3 as step 5’.
Step 5’ Sliding cross-correlation
a)
Cross-correlation with
i. Get local sequence

Denote the sequences in frequency domain for the 11 OFDM symbols are.

Then apply 128-point IFFT operation to each:

.

Denote.

Add zeros at the CP positions of each, then we can get. (Actually, size of 5th column ofis 138, just for simplification)

Then reshapeto size with column first, denoted by.

Down-sampleto 240 kHz sampling rate, then we can get the basic sequence:

, and for each, .

Then apply differential operation to to get the local sequence:

.
ii. Sliding correlation

Use to perform sliding cross-correlation with, and denote the correlation result (plural) as.
b)
Cross-correlation with
i. Get local sequence

For in a), apply differential operation to to get the local sequence:

.
ii. Sliding correlation

Use to perform sliding cross-correlation with, and denote the correlation result (plural) as.
c)
Cross-correlation with
i. Get local sequence

For in a), apply differential operation to to get the local sequence:

.
ii. Sliding correlation

Use to perform sliding cross-correlation with, and denote the correlation results (plural) as.
d)
Cross-correlation with
i. Get local sequence

For in a), apply differential operation to to get the local sequence:

.
ii. Sliding correlation

Use to perform sliding cross-correlation with, and denote the correlation result (plural) as.
Algorithm 3
Similar as algorithm 2, except that only lag-size of one OFDM symbol is used in differential operations.
Step 1: Same as step 1 of algorithm 2.
Step 2: Same as step 2 of algorithm 2.
Step 3: Differential operation with 1 OFDM symbol offset (17 samples at 240kHz sampling rate)

After step 2, we have.

, and eachis gotten by:

Step 4: First accumulation with previous period

For the current results and the previous results, apply. (N means the index of PSS period)
Step 5: Sliding cross-correlation
a) Get local sequence

Denote the sequences in frequency domain for the 11 OFDM symbols are.

Then do 128-point IFFT operation to each:

.

Denote.

Then add zeros at the CP positions of, we can get. (Size of 5th column ofis 138, just for easier writing)

Then reshapeto size with column first, denoted by.

Down-sampleto 240 kHz sampling rate, then we can get the basic sequence:

, and for each, .

Then do according differential operation to to get the local sequence:

.
b) Sliding correlation

Use to perform sliding cross-correlation with, and denote the correlation result (plural) as.
Step 6: Second accumulation with previous period

, and is set to 0.9 after testing. N means the index of PSS period.
Step 7: Same as step 8 of algorithm 2.
Step 8: Same as step 9 of algorithm 2.
Algorithm 4a
Partial cross correlation across 11 OFDM symbols with 7 frequency hypotheses is used. The coherent combining is within an OFDM symbol, and non-coherent combining is applied across 11 OFDM symbols.
Algorithm 4b
Partial cross correlation across 22 blocks with 5 frequency hypotheses is used. The coherent combining is within each block (1/2 OFDM symbol), and non-coherent combining is applied across 22 blocks.

image2.wmf
1

=Ä

RRF

image44.wmf
4444444

001166

[,...,,,...,,...,,...,]

llllll

=

Local

oleObject50.bin

image45.wmf
4

Local

oleObject51.bin

oleObject52.bin

image46.wmf
4

Corr

oleObject53.bin

image47.wmf
121*32*43*

123

()()()

current

www

+´+´+´

Corr=CorrCorrCorrCorrCorrCorrCorr

oleObject54.bin

image48.wmf
123

0.76,0.54,0.34

www

===

oleObject2.bin

oleObject55.bin

image49.wmf
1

,1,2,3,...

NcurrentN

*N

a

-

=

Corr=Corr+Corr

oleObject56.bin

image50.wmf
a

oleObject57.bin

image51.wmf
01

{,,...,}

Nm

crcrcr

=

Corr

oleObject58.bin

image52.wmf
222

01

Max({,,...,})

m

peakcrcrcr

=

oleObject59.bin

image53.wmf
222

01

({,,...,})

m

aveEcrcrcr

=

image3.wmf
F

oleObject60.bin

image54.wmf
peak/ave>=Threshold

oleObject61.bin

image55.wmf
Threshold

oleObject62.bin

image56.wmf
th

j

oleObject63.bin

image57.wmf
N

Corr

oleObject64.bin

image58.wmf
Corr

oleObject3.bin

oleObject65.bin

image59.wmf
()

__14118

2

j

phasecr

coarsecfoest

p

=´

oleObject66.bin

oleObject67.bin

image60.wmf
0110

,,...,

SSS

oleObject68.bin

image61.wmf
k

S

oleObject69.bin

image62.wmf
(),0,1,...,10

kk

IFFTk

==

AS

oleObject70.bin

image4.wmf
Ä

image63.wmf
128110110

[,,...,]

´

=

AAAA

oleObject71.bin

image64.wmf
k

A

oleObject72.bin

image65.wmf
13711

´

B

oleObject73.bin

image66.wmf
B

oleObject74.bin

oleObject75.bin

image67.wmf
11508

´

oleObject4.bin

oleObject76.bin

image68.wmf
0121507

{,,,...,}

llll

L=

oleObject77.bin

image69.wmf
L

oleObject78.bin

image70.wmf
01188

{,,...,}

blblbl

BL=

oleObject79.bin

image71.wmf
[0,188]

k

Î

oleObject80.bin

image72.wmf
8

kk

bll

=

image5.wmf
10128

{,,,...,}

n

rrrr

=

R

oleObject81.bin

image73.wmf
BL

oleObject82.bin

image74.wmf
1***

170181188171

{,,...,}

blblblblblbl

´´´

Local=

oleObject83.bin

oleObject84.bin

oleObject85.bin

oleObject86.bin

image75.wmf
2

N

Dif

oleObject87.bin

oleObject5.bin

oleObject88.bin

oleObject89.bin

image76.wmf
2***

340351188154

{,,...,}

blblblblblbl

´´´

Local=

oleObject90.bin

oleObject91.bin

oleObject92.bin

oleObject93.bin

image77.wmf
3

N

Dif

oleObject94.bin

oleObject95.bin

image6.wmf
2012

{,,,...,}

n

wwww

=

R

oleObject96.bin

image78.wmf
3***

510521188137

{,,...,}

blblblblblbl

´´´

Local=

oleObject97.bin

oleObject98.bin

oleObject99.bin

oleObject100.bin

image79.wmf
4

N

Dif

oleObject101.bin

oleObject102.bin

oleObject103.bin

oleObject6.bin

image80.wmf
4***

680691188127

{,,...,}

blblblblblbl

´´´

Local=

oleObject104.bin

oleObject105.bin

oleObject106.bin

oleObject107.bin

image81.wmf
2012

{,,,...,}

n

wwww

=

R

oleObject108.bin

image82.wmf
01217

{,,,...,}

currentn

dddd

-

=

Dif

oleObject109.bin

image83.wmf
(0,1,...,17)

i

din

=-

image7.wmf
0,1,...,

in

=

oleObject110.bin

image84.wmf
*

17

iii

dww

+

=´

oleObject111.bin

image85.wmf
1

,1,2,3,...

NcurrentN

N

-

=+=

DifDifDif

oleObject112.bin

oleObject113.bin

oleObject114.bin

oleObject115.bin

oleObject116.bin

image86.wmf
12811

´

A

oleObject7.bin

oleObject117.bin

oleObject118.bin

oleObject119.bin

oleObject120.bin

oleObject121.bin

oleObject122.bin

oleObject123.bin

oleObject124.bin

oleObject125.bin

oleObject126.bin

image8.wmf
8

ii

wr

=

oleObject127.bin

image87.wmf

170181188171

{,,...,}

blblblblblbl

´´´

Local=

oleObject128.bin

image88.wmf
Local

oleObject129.bin

image89.wmf
N

Dif

oleObject130.bin

image90.wmf
current

Corr

oleObject131.bin

image91.wmf
1

NcurrentN

*

a

-

Corr=Corr+Corr

oleObject8.bin

oleObject132.bin

oleObject133.bin

image9.wmf
11111

01217

{,,,...,}

currentn

dddd

-

=

Dif

oleObject9.bin

image10.wmf
1

m

d

oleObject10.bin

image11.wmf
1*

17

mmm

dww

+

=´

oleObject11.bin

image12.wmf
22222

01234

{,,,...,}

currentn

dddd

-

=

Dif

oleObject12.bin

image13.wmf
2

m

d

oleObject13.bin

image14.wmf
2*

34

mmm

dww

+

=´

oleObject14.bin

image15.wmf
33333

01251

{,,,...,}

currentn

dddd

-

=

Dif

oleObject15.bin

image16.wmf
3

m

d

oleObject16.bin

image17.wmf
3*

51

mmm

dww

+

=´

oleObject17.bin

image18.wmf
44444

01268

{,,,...,}

currentn

dddd

-

=

Dif

oleObject18.bin

image19.wmf
4

m

d

oleObject19.bin

image20.wmf
4*

68

mmm

dww

+

=´

oleObject20.bin

image21.wmf
1

,1,2,3,4,1,2,3,...

iii

NcurrentN

iN

-

=+==

DifDifDif

oleObject21.bin

image22.wmf
1

N

Dif

oleObject22.bin

image23.wmf
0110

({,,...,})

ccc

C

oleObject23.bin

image24.wmf
11111

0129102132435465768798109

{,,,...,}[,,,,,,,,,]

llllcccccccccccccccccccc

==

Local_Dif

oleObject24.bin

image25.wmf
1

i

l

oleObject25.bin

image26.wmf
1111111

001199

[,...,,,...,,...,,...,]

llllll

=

Local

oleObject26.bin

image27.wmf
1

Local

oleObject27.bin

oleObject28.bin

image28.wmf
1

Corr

oleObject29.bin

image29.wmf
2

N

Dif

oleObject30.bin

oleObject31.bin

image30.wmf
22222

01282031425364758697108

{,,,...,}[,,,,,,,,]

llllcccccccccccccccccc

==

Local_Dif

oleObject32.bin

image31.wmf
2

i

l

oleObject33.bin

image32.wmf
2222222

001188

[,...,,,...,,...,,...,]

llllll

=

Local

oleObject34.bin

image33.wmf
2

Local

oleObject35.bin

oleObject36.bin

image34.wmf
2

Corr

oleObject37.bin

image35.wmf
3

N

Dif

image1.wmf
R

oleObject38.bin

oleObject39.bin

image36.wmf
33333

012730415263748596107

{,,,...,}[,,,,,,,]

llllcccccccccccccccc

==

Local_Dif

oleObject40.bin

image37.wmf
3

i

l

oleObject41.bin

image38.wmf
3333333

001177

[,...,,,...,,...,,...,]

llllll

=

Local

oleObject42.bin

image39.wmf
3

Local

oleObject43.bin

oleObject1.bin

oleObject44.bin

image40.wmf
3

Corr

oleObject45.bin

image41.wmf
4

N

Dif

oleObject46.bin

oleObject47.bin

image42.wmf
44444

0126405162738495106

{,,,...,}[,,,,,,]

llllcccccccccccccc

==

Local_Dif

oleObject48.bin

image43.wmf
4

i

l

oleObject49.bin

