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1 Introduction

Several different proposals for the EUTRA synchronization channel (SCH), intended for use in the cell search procedure are proposed in RAN1 until now [1]-[4]. Compared to the solution existing in WCDMA standard, Motorola’s proposal [1] makes a step forward towards concurrent initial synchronization acquisition and cell identification. In that way the duration of overall cell search procedure, resulting in complete timing and frequency acquisition and cell identification, is supposed to be shortened.
According to this proposal, the synchronization channel consists of two concatenated identical cell-specific OFDM waveforms, which are preceded by a cyclic prefix of LCP samples (identical to the last LCP samples of the OFDM waveform). Such SCH is designed to support the initial timing acquisition by using blind differential correlation detection in the receiver [5].

The cell identification is performed after the initial timing acquisition, by detecting the cell specific OFDM waveform obtained by modulating the sub-carriers with the elements of a cell-specific Zadoff-Chu (ZC) sequence of prime length. The cell-specific index of the ZC sequence can be detected by using an IDFT, after the differential encoding of the block of the received signal samples.


Although the above solution for the synchronization channel seems rather promising in terms of reduced overall cell search time, still its timing acquisition is very sensitive to noise/interference due to the broad triangular shape of the differential correlation function. Thus in this contribution we propose a simple modification of the synchronization signal from [1], which can result in significant improvement of the accuracy and robustness of the timing acquisition in the cell search, while still permitting the cell identification from a single synchronization signal.
In Section 2 there is a description of the conventional timing acquisition by blind differential correlative detection. In Section 3, general centrally symmetric synchronization signals and the corresponding blind reverse differential correlation detection algorithm are introduced. Section 4 discusses centrally symmetric OFDM synchronization signals. Section 5 describes OFDM synchronization signals based on the orthogonal Golay complementary sequences. Finally, Section 6 contains some conclusions.
2 Repetitive signals and differential correlation function
The SCH signal from [1] consists of a cyclic prefix followed by synchronization signal s(k), k=0,1,…,N-1, consisting of twice repeated basic cell-specific OFDM waveform W(l), l=0,1,…,N/2-1, where N is the number of samples in the OFDM signal obtained after the IDFT in the transmitter. The timing of the SCH can be detected in the receiver by the following algorithm:

A) Take a  block of N received signal samples;

B) Correlate the first N/2 samples of the block with the complex conjugate of the last N/2 samples of the block, and store the resulting differential correlation;

C) Repeat the first two steps for a new block of N samples of the received signal, taken after a delay of one sample compared to the previous block;

D) Find the delay of the block of N samples that result in the maximum correlation magnitude, and select it as the initial timing for OFDM symbol demodulation.

The differential correlation C(p) of the received signal r(k), k=0,1,…,N-1, can be mathematically represented as 

C(p)=
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where p denotes the delay of the first sample in the block of N received samples with respect to the true position of the first sample of the synchronization signal, and “*” denotes complex conjugation. If the received signal contains just twice repeated waveform W(k) (without the cyclic prefix), then it follows that the differential correlation of the received signal is equal to the differential correlation function CW(p) of the waveform W(k), which exists only for p=
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Differential correlation function (1) of the synchronization signal from [1], generated by IFFT of N=128 samples, with cyclic prefix of 10 samples, is shown in Fig.1. The differential correlation function in Fig.1 reaches a plateau which has the length equal to the length of the cyclic prefix [5]. A broad triangular-like shape of the differential correlation function in Fig.1 is in accordance with (2). The different synchronization signals with similar envelopes will produce the similar differential correlations. 
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Fig.1. Differential correlation function of the repetitive OFDM synchronization signal from [1].

Much better timing acquisition properties would have been obtained if the differential correlation function would have had an impulse-like shape, similar to the aperiodic autocorrelation function of the pseudo random signals, with a narrow central correlation peak corresponding to zero delay, and low correlation sidelobes for other delays.

3 Centrally symmetric signals and reverse differential correlation 

In order to achieve an impulse-like differential correlation function, we shall first modify the definition of the differential correlation so that as much as possible different products of samples are involved in the summations corresponding to the different delays. In that way the differential correlation values corresponding to different out-of-synchronization delays will be randomized.

One way to achieve the randomized out-of-sync differential correlation values is to reverse the order of samples in one of the blocks of samples used in (1). We shall define so-called reverse differential correlation D(p) as 

D(p)=
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where p denotes the delay of the first sample in the block of N received samples with respect to the true position of the first sample of the synchronization signal, and 
[image: image8.wmf]é

ù

x

 denotes the ceiling function of x, i.e. the smallest integer greater than or equal to x.

To obtain the maximum possible correlation value (3) at p=0, equal to the energy of the signal in the correlation window of 
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 samples, the synchronization signal s(k), k=0,1,…,N-1, should be centrally symmetric, i.e. such that 
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where N is arbitrary positive integer, and where we assumed that the signal energy is equally distributed between the first and second block of 
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From (3) and (4) it follows that the reverse differential correlation Ds(p) of the synchronization signal s(k) exists only for p=
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Ds(p)= Ds*(-p)=
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The formula (5) resembles very much to the aperiodic autocorrelation function R(p) of the synchronization signal s(k), defined as

 













R(p)= R*(-p)= 
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As it can be seen, the only difference between Ds(p) and R(p) is in a reduced number of summation elements. Thus if the s(k) has an impulse-like aperiodic autocorrelation function, its reverse differential correlation function has very good chances to be impulse-like as well.

The equation (5) shows that, in general, the non-repetitive, but centrally symmetric pseudo-random signals produce lower correlation sidelobes than the repetitive signals.

An alternative to centrally symmetrical synchronization signals defined by (6) are such satisfying
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in which case the reverse differential correlation has to be re-defined as 

D(p)=
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The OFDM synchronization signal proposed in [6, eq.(10)] can be viewed as a special case of signal (7), defined only for N=0 mod 4.
The same maximum absolute value of the reverse differential correlation can be obtained if the signal is skew-symmetric, i.e. defined as 
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(9)
Similarly, the absolute value of (5) will not change if the signal is defined as
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4 Centrally symmetric OFDM synchronization signals
To illustrate the design of centrally symmetric synchronization signals (4) and the properties of the corresponding reverse differential correlation functions (3), we shall generate the set of OFDM centrally symmetric synchronization signals starting from the assumptions given in [1]: the sampling frequency is 1.92MHz, the sub-carrier spacing is 15kHz, the maximum number of occupied sub-carriers is Nosc=76 out of totally N=128 sub-carriers within 1.92MHz frequency band (the transmission bandwidth is 1.25MHz). The occupied sub-carriers are modulated by the elements of a pseudo-random sequence from the set of sequences with good cross-correlation properties. The different sequences from the set are labelled by the different cell identification numbers (IDs). After the DFT demodulation of the received OFDM signal the transmitted sequence can be identified by de-mapping from the sub-carriers, followed by a certain signal processing. Low cross-correlation between sequences contributes to more reliable identification of the sequences when the multiple signals are concurrently received from the different cells.

The output OFDM synchronization signal s(k) of length N=128 samples is obtained by the IDFT of the spectrum H(n) of N=128 Fourier coefficients, as 

s(k)=
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If H(n)=H(N-n), n=0,1,2,…,N-1, where H(N)=H(0) holds according to the periodicity of the DFT, it can be shown that the s(k) will be also symmetric around its s(N/2) sample, i.e. 

s(k)= s(N-k),   if and only if  H(n)=H(N-n),
k,n=1,…, N-1.
           








(12)

The spectrum H(n) might be obtained by using the elements of a pseudo-random sequence c(l),  l=0, 1,…, L-1, L≤Nosc, as the Fourier coefficients at the occupied sub-carrier frequencies.

If we define the mapping between c(l) and H(n) as 

H(n)=
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where c(l), l=0, 1,…, L-1, is a  centrally symmetric sequence of odd length L, it is obvious that condition in (12) will be satisfied.

Consequently, the resulting synchronization signal s(k), k=0,1,2,…,N-1, is a low-pass base-band OFDM signal symmetrical around its s(N/2) sample, meaning that only the sample s(0) does not have its symmetrical counterpart with respect to s(N/2). In other words, the resulting OFDM synchronization signal can be considered as consisting of two parts: the first part contains one sample and the second part contains N-1 centrally symmetric samples, such that s(k)=s(N-k), k=1,2,…,N-1.

It further means that for the blind detection of the above OFDM signal we should use the blocks of N-1 input signal samples, and perform the reversed differential correlation as

  

 D(p)=
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However, the whole block of N samples should be used for OFDM demodulation, and subsequent identification of the information content (cell ID), once the correct timing is acquired. 

The remaining question is which kind of centrally symmetric sequences of odd length L to choose for modulation of the sub-carriers. The L-1 pseudo-noise sequences {ar(l)}, r=1,…,L-1, where L is a prime number, used in [1] to produce the repetitive OFDM synchronization signals are Zadoff-Chu (ZC) sequences of odd length L, defined as 

ar(l)= 
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where WL=exp(-j2π/L),  j=
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If L is odd, it can be easily shown that the ZC sequence (15) is centrally symmetric (around its (L-1)/2+1-th element), i.e. ar(l)= ar(L-1-l), l=0, 1,…, L-1. As the maximum allowed number of occupied sub-carriers is Nosc=76, and the ZC sequence length should be a prime number, we shall use L=79 in (15) to generate a prototype ZC sequence, which is then shortened to length L=75 by discarding the first 2 and the last 2 elements of the prototype ZC sequence, so that the resulting shortened ZC sequence remains centrally symmetric. The shortened sequence is then used in (13) to produce the OFDM synchronization signal (11) after IDFT of H(n). 
By choosing the different values of r in (15), we can obtain up to M=L-1=74 different OFDM synchronization signals, each carrying the different information about the cell ID. This number of cell IDs is almost twice larger than the number (41) of cell IDs in [1] for the same size of synchronization signals. In the same time, the principle of the detection of the ZC sequences from [1], by using differential encoding and IDFT, can be applied also in the example at hand. To ensure the demodulation robustness in the case of multipath propagation channel, the OFDM synchronization signal is preceded by a cyclic prefix. The magnitude of the reverse differential correlation function of the OFDM synchronization signal (11) obtained from the shortened ZC sequence of length L=75, with the cell ID=r=29 and with the cyclic prefix of LCP=10 samples, is shown in Fig.2. 
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Fig.2. Reverse differential correlation function of OFDM synchronization signal with cyclic prefix.
4.1 Timing acquisition performances of centrally symmetric OFDM signals
In the user equipment (UE) in cellular systems the initial frequency error (immediately after power on) of the RF signal might be of the order of tens of thousands of Hz. This frequency error will be reduced within the limits of several hundreds of Hz once the receiver is locked to the received signal from a base station. The UE will be locked to a base station after the initial cell search, the task performed by the UE after it is switched on. Once the UE has found its “camping” cell, the cell search procedure enters the monitoring mode, where it monitors the available neighbouring cells, either for possible handover, if the UE is in active mode, or for possible cell re-selection (for better signal reception), if the UE is in the idle mode. In the monitoring mode the frequency error between the received signals and the UE’s RF signal is significantly reduced because all the cells are tightly frequency synchronised and the UE is already synchronized to one of them.

Thus, during the initial cell search it should be possible to detect the time-of-arrival of the synchronization signals transmitted from the base station under relatively high frequency error in the receiver. 

The timing acquisition performance of the synchronization signal from the Example 1 is evaluated by simulation, in terms of probability of correct timing acquisition as a function of signal-to-noise ratio (SNR) on Additive White Gaussian Noise (AWGN) channel. The four values of the initial frequency error df between the UE and the base station are simulated: df=0, 1, 2 and 3 ppm at 2.6GHz carrier frequency. The cyclic prefix is 10 samples long in all cases.

The timing acquisition is considered correct if the estimated time of arrival is within the error tolerance zone. The size of the error tolerance zone cannot be larger than the length of the cyclic prefix, and should be equal to the part of the cyclic prefix that is not covered by the channel response of the previous OFDM symbol. As the length of cyclic prefix should not be much longer (if at all) than the maximum expected length of the channel response, the error tolerance zone in practice cannot be longer than a few samples. However, as the repetitive synchronization signal from [1] is evaluated as the reference for comparison, we shall first take the error tolerance zone to be equal to the cyclic prefix, in order to obtain the best performances for the signal from [1]. It can be easily shown that the magnitude of the differential correlation does not depend on the frequency error, so the signal from [1] is evaluated with no frequency error. The results are shown in Fig.3. 
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Fig.3. Probabilities of correct timing acquisition on AWGN channel, error tolerance zone equal to the length of cyclic prefix (10 samples).

Without the initial frequency error, the centrally symmetric signal detected by the reverse differential correlation outperforms the repetitive signal detected by the differential correlation by more than 1dB at 0.5 probability of correct acquisition, and more than 5dB at 0.9 probability of correct acquisition. 

For the non-zero values of the frequency error, the performance of the repetitive signal remains unchanged, while the performance of the centrally symmetric OFDM signal deteriorates with increase of the frequency error. At the frequency error of 3ppm the centrally symmetric OFDM signal fails to acquire the timing synchronization regardless of the SNR. The explanation of this phenomenon can be obtained by starting from the similarity between the formulas (5) and (6), and by observing the properties of the magnitude of the generalized aperiodic autocorrelation function of the synchronization signal obtained from a ZC sequence. This function, widely known as the ambiguity function, is a two-dimensional function of the delay and the frequency error. It is well known that the chirp-like signals, such as the non-repetitive signal from Fig.3, has the ridge-type ambiguity function, characterized by a shifted, non-zero delay positions of its main lobe at high frequency errors. This effect is the major reasons for the collapse of the reverse differential correlation at 3ppm frequency error. The signals with some other cell IDs might be a bit less sensitive to this effect and might converge to probability of acquisition equal to 1 at higher SNRs, but they will also collapse at a bit higher frequency errors.

5 OFDM synchronization signals based on orthogonal Golay complementary sequences
As we mentioned before, the error tolerance zone in practice cannot be longer than a few samples. In that case, however, even the differential correlation (used to detect the repetitive synchronization signal from [1]) shows bad performances, independently of the frequency error, as it can be seen in Fig.4, where the timing acquisition performances of the signals from Fig. 3 are evaluated with the tolerance zone of 2 samples, for several different values of the frequency error.
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Fig.4. Probabilities of correct timing acquisition on AWGN channel, error tolerance zone is 2 samples. 

The reason for bad performances of the differential correlation lies in the plateau shown in Fig.1, which makes highly probable that the noise will produce a correlation peak at the delay within the correlation plateau less than the zero (correct) delay. Thus, the curve corresponding to repetitive signal converges very slowly to the value 1 with an increase of SNR.
Thus we have to consider other types of signals with impulse-like differential ambiguity functions, more tolerant to frequency errors. If we use the bits of a binary sequence from a set of binary pseudo-noise sequences as the Fourier coefficients H(n) in (11), the resulting OFDM synchronization signal s(k) is similar to (7) and has the property 
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Such a signal can be detected by a modified reversed differential correlation (8), as 

  




 D(p)=
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The magnitudes of the reversed differential correlations (8) and (17) remain unchanged under arbitrary frequency error df in the signal, i.e.
 D(p)=
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 fs is sampling frequency.
Let assume now that the set of pseudo-noise sequences used to generate the cell-specific OFDM synchronization signals is the set of orthogonal Golay (binary) complementary sequences [7]
. If the elements of a Golay sequence c(l), l=0, 1,…, L-1, are mapped as the Fourier coefficients of the equidistant consecutive sub-carriers, for example as
H(n)=
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the resulting OFDM signal has the peak-to-average power ratio less than 3dB [8]. It further means that all the OFDM synchronization signals, based on different Golay sequences from a set of orthogonal complementary pairs will have small PAPR values, allowing in that way the maximization of the average transmitted power, i.e. the maximization of the received SNR at the cell edge.

After receiving the signal and demodulating the data from the OFDM signal, the specific sequence can be identified by correlating with all sequences from the set. Such a bank of correlators can be efficiently implemented, for example, by using the fast Hadamard transformation. Differential encoding might be applied to the demodulated sequence before the correlation to remove the channel distortion. In that case the reference sequences used for correlation should be also differentially encoded.
Once the exact timing is obtained, the cyclic prefix of the OFDM synchronization signal can be used for frequency error estimation, as well as cyclic prefixes of other OFDM symbols to improve the estimate of the frequency error. Besides, a modification of the frequency error estimation method described in [9] could be applied as well.
5.1 Timing acquisition performances of OFDM-Golay signals
The timing acquisition performances of an OFDM signal of length N=128 obtained from a Golay complementary sequence of length L=64 according to (18), are shown in Fig.5 for AWGN channel. It can be seen that the timing acquisition performances of the OFDM signal obtained from a Golay complementary sequence do not change with the increase of the frequency error. 
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Fig.5. Probabilities of correct timing acquisition on AWGN channel, error tolerance zone is 2 samples. 
In Figs. 6 and 7, the probability of correct timing is depicted for a TU channel at 3 km/h. The error tolerance zone is set to 0, 4 and 10 samples, respectively. The plots show this probability both without frequency error and with frequency error of 7.8 kHz. 
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Fig. 6. Probabilities of correct timing acquisition on a TU channel, both with and without frequency offset error. The timing error tolerance zone is 0, 4 and 10 samples, respectively.
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Fig. 7. Probabilities of correct timing acquisition on a TU channel, both with and without frequency offset error. The timing error tolerance zone is 0, 4 and 10 samples, respectively.
It can be seen that the OFDM-Golay signals (detected by the reverse differential correlation) produce much higher probability of correct timing acquisition than the repetitive OFDM signals detected by the differential correlation. Besides, they are less sensitive to the length of the error tolerance zone, i.e., the correlation peaks are generally closer to the correct timing. This can be explained by Figs. 8 and 9, which are realization examples of the correlation function. These examples illustrate that the reverse correlation can maintain its narrow peak in the presence of multi-path, thereby obtaining the peaks close to the desired timing position.
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Fig. 8. Example of reverse differential correlation function on a TU channel at SNR=10 dB.
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Fig. 9. Example of differential correlation function on a TU channel at SNR=10 dB.
6 Conclusions 
The results presented in this contribution demonstrate that the concept of the cell search based on cell-specific synchronization channel has the potential both for accurate synchronization acquisition and fast cell identification. In such cell-specific synchronization channel, a set of cell-specific OFDM waveforms, all characterized by a centrally symmetric shape of their magnitudes, is used both for initial synchronization and cell identification in the UE. Each cell-specific OFDM waveform is obtained by IDFT of a cell-specific pseudo-noise sequence, whose elements are used as the Fourier coefficients at the occupied sub-carrier frequencies. The different pseudo-noise sequences are labelled by the different cell IDs. Each OFDM waveform is preceded by a cyclic prefix.

The cell-specific OFDM synchronization signals based on the orthogonal Golay complementary sequences, detected by the reverse differential correlation algorithm, can result in significant improvement of the accuracy and robustness of the blind timing acquisition under arbitrary high frequency error in the UE. All such synchronization signals have the PAPR less than 3dB.
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� The pairs of complementary Golay sequences exist for even sequence lengths L, and are characterized by the property that the sum of the aperiodic autocorrelation functions of the sequences equals zero for all non-zero delays. A set of orthogonal Golay sequences of length L can be obtained by the bit-wise multiplication of a single Golay complementary sequence of length L with all L Walsh sequences of length L [7]. The sequences within such a set can be grouped into L/2 different complementary pairs. 
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