

3GPP TSG RAN WG1 #98bis								R1-1910855
[bookmark: _GoBack]Chongqing, October 14th – 20th, 2019

Agenda Item:		7.2.6.3
Source:		China Unicom
Title:		PUSCH enhancements for URLLC
Document for:		Discussion and decision
Introduction
In RAN1 NR #98 meeting [2], the following agreements and conclusions were achieved for PUSCH enhancements.
R1-1909639
Agreements: In terms of how to interpret L and K for all PUSCH transmissions, down-select between the following two:
· Alt 1: The time window within which valid symbols are used for transmission is L*K.
· FFS the definition of “valid symbols”
· Alt 2: The time window within which valid symbols are used for transmission can be longer than L*K symbols, and it is extended at least in case of semi-static DL symbols.
· FFS extension of the time window in case of dynamic DL symbols and/or semi-static flexible symbols and/or reserved symbols (if defined) and/or SSB symbols and/or type-0 CSS in CORESET#0 (as indicated by MIB)
· FFS the definition of “valid symbols”
· FFS whether to define a maximum time window size and if so, details
R1-1909826
Conclusion:
In terms of how to handle the interaction of enhanced PUSCH with DL/UL directions, consider the following options:
· For DG PUSCH
· If dynamic SFI is not configured,
· Semi-static flexible symbols are used for PUSCH. Segmentation occurs only around semi-static DL symbols.
· If dynamic SFI is configured
· Option 1: behavior not dependent on dynamic SFI
· Option 1-1: Semi-static flexible symbols are used for PUSCH. Segmentation occurs only around semi-static DL symbols.
· FFS whether the conflict between dynamic SFI and symbols used for PUSCH transmission is considered as an error case, e.g.
· Option 1-1a: The UE does not expect any semi-static flexible symbol to be indicated as DL within the PUSCH transmission time window.
· Option 1-1b: No error case is defined and in general all semi-static flexible symbols are used for PUSCH within the PUSCH transmission time window.
· Option 1-2: Semi-static DL/flexible symbols are not used for PUSCH. Segmentation occurs around semi-static DL/flexible symbols.
· Option 1-3: Dynamic indication in UL grant on which set of semi-static flexible symbols are used for PUSCH. Segmentation occurs around semi-static DL and the dynamically indicated invalid symbols.
· Option 1-4: Pre-defined rules to determine which set of semi-static flexible symbols are used for PUSCH. Segmentation occurs around semi-static DL and the invalid symbols as defined in the rules.
· Option 2: the UE uses SFI to determine the symbols to transmit
· In case SFI is configured and received
· Option 2-1: Segmentation occurs around semi-static DL symbols and dynamic DL/flexible symbols
· Option 2-2: Dynamic flexible symbols are used for PUSCH. Segmentation occurs around semi-static DL symbols and dynamic DL symbols
· Option 2-3: Dynamic flexible symbols are used for PUSCH. A repetition is not transmitted if it conflicts with a dynamic DL symbol.
· Option 2-4: A repetition is not transmitted if it conflicts with a dynamic DL/flexible symbol
· In case SFI is configured and not received
· A repetition is not transmitted if it conflicts with a semi-static flexible symbol.
· For CG PUSCH other than the first Type 2 CG PUSCH (including all the repetitions) activated by an UL grant
· If dynamic SFI is not configured,
· Semi-static flexible symbols are used for PUSCH. Segmentation occurs only around semi-static DL symbols.
· If dynamic SFI is configured
· Option 1: behavior not dependent on dynamic SFI
· Option 1-2: Semi-static DL/flexible symbols are not used for PUSCH. Segmentation occurs around semi-static DL/flexible symbols.
· Option 1-4: Pre-defined rules to determine which set of semi-static flexible symbols are used for PUSCH. Segmentation occurs around semi-static DL and the invalid symbols as defined in the rules.
· Option 2: the UE uses SFI to determine the symbols to transmit
· In case SFI is configured and received
· Option 2-1: Segmentation occurs around semi-static DL symbols and dynamic DL/flexible symbols
· Option 2-4: a repetition is not transmitted if it conflicts with a semi-static DL symbol and a dynamic DL/flexible symbol
· In case SFI is configured and not received
· A repetition is not transmitted if it conflicts with a semi-static flexible symbol.
· For the first Type 2 CG PUSCH (including all the repetitions) activated by an UL grant,
· Alt 1: same behavior as DG PUSCH
· Alt 2: same behavior as CG PUSCH without an associated UL grant
· …
· FFS: in case of a repetition not being transmitted (as in the above bullets), whether a repetition is a nominal repetition or a repetition after segmentation due to semi-static DL symbol(s)/slot boundary
· FFS: whether to postpone or not, and if yes, under what condition(s)
· FFS: whether/how guard period is handled
· Note that segmentation at slot boundary is always performed, even though it is not explicitly mentioned in the bullets above.
· FFS: the handling of conflict with SSB/PRACH symbols, the handling of conflict with semi-statically configured DL reception, etc.
· Other options are not precluded
In this contribution, we further discuss the issue about definition of L and K, dynamic indication of repetition number, TBS determination, redundancy version of repetitions and DMRS assignments.
Definition of L and K
Considering that the total time domain resources for the PUSCH transmission is related to the value of K*L, there is no need to let L>14. The total time domain resources for PUSCH can be efficiently increased by increasing the repetition numbers K. Besides, the existing specifications will be impacted if the value of L can be larger than 14.
Observation 1: Allow the value of L can be larger than 14 has no obvious advantage but will affect existing specifications.
Proposal 1: L>14 shouldn’t be supported.
The interpretation of K and L is another issue to be determined. There are two interpretations of it.
Alt 1: L*K represents the nominal number of symbols (the time window within which valid UL symbols are used for transmission)
Alt 2: L*K represents the total number of actual symbols for UL transmission (the actual time window within which valid UL symbols are used for transmission can be longer than L*K symbols)
Alt 1 has the issue that the total number of transmitted PUSCH symbols will be lower than L*K which will influence the demodulation performance. While Alt 2 will has a risk of increased latency. Therefore different solutions of ‘orphan symbol’ will have different effects on Alt 1 and Alt 2. As illustrated in Figure 1~Figure 4, Alt 1 and Alt 2 have no difference if the ‘orphan symbol’ is dropped or merged with the adjacent repetition. But if the 3rd repetition is postponed to avoid the appearance of ‘orphan symbol’, the impact on Alt 1 and Alt 2 will be greatly different. For Alt 1, the final result will be the same as ‘drop the orphan symbol’ since the time window is certain. For Alt 2, this method can avoid unnecessary segmentation but will increase latency. Considering that dropping ‘orphan symbol’ will influence reliability, here we propose to merge the ‘orphan symbol’ with its adjacent repetition for Alt 1. While for Alt 2, whether to merge the ‘orphan symbol’ with its adjacent repetition or postpone a repetition to avoid the appearance of ‘orphan symbol’ should be further discussed.

[bookmark: _Ref20058437]Figure 1 For Alt 1 and Alt 2, the ‘orphan symbol’ located in the 13th symbol in slot n is dropped

Figure 2 For Alt 1 and Alt 2, the ‘orphan symbol’ located in the 13th symbol in slot n is merged with its adjacent repetition

Figure 3 For Alt 1, to avoid the appearance of ‘orphan symbol’, the 3rd repetition is postponed

[bookmark: _Ref20058465]Figure 4 For Alt 2, to avoid the appearance of ‘orphan symbol’, the 3rd repetition is postponed
Observation 2: For Alt 1 and Alt 2, the same solution for ‘orphan symbol’ may has different impacts.
Observation 3: For Alt 1, the final result of postponing a repetition to avoid the appearance of ‘orphan symbol’ will be the same as dropping the ‘orphan symbol’ since the time window is certain.
Proposal 2: The interpretation of L*K should be handled together with the ‘orphan symbol’ issue.
Proposal 3: For Alt 1, merge the ‘orphan symbol’ with its adjacent repetition. For Alt 2, further discuss whether to merge the ‘orphan symbol’ with its adjacent repetition or postpone a repetition to avoid the appearance of ‘orphan symbol’.
Dynamic indication of repetition number
Dynamic indication of the nominal number of repetitions in the DCI scheduling dynamic PUSCH is supported for PUSCH enhancements. There are three options proposed for the dynamic indication:
Option 1: Jointly coded with SLIV in TDRA table.
Option 2: Introduce a new DCI field.
Option 3: Reuse RV field.
Considering that there is no redundancy between TDRA which indicate time domain resources and the nominal number of repetitions, it is no need to jointly code the nominal number of repetitions with SLIV in TDRA table. Besides, RV determination method in Rel-16 may be depend on actual repetitions but not nominal repetitions, so reuse RV field to indicate the nominal number of repetitions will be unsuitable.
Proposal 4: Introduce a new DCI field to indicate of the nominal number of repetitions.
TBS Determination
TBS determination has been discussed for several times. There are mainly two views. The first support to determine TBS based on the number of REs of one repetition. While the second one support to determine TBS based on the number of REs of all the repetitions. Determine TBS based on all repetitions will lead to quite high code rate for each actual repetition and affect decoding performance, so determine TBS based on the number of REs of one repetition should be supported and further discussed.
Another issue is to determine which repetition should be used for TBS determined. There are several options to be considered.
· Option a: Based on the first repetition
· Option c: Based on the shortest repetition
· Option b: Based on the longest repetition for option 6
· Option d: Based on the nominal repetition for option 4

Option a and option b has a risk of too low effective coding & spectral efficiency rate issue which is difficult to solve. Option c and option d may lead to quite high code rate when the actual repetition is too small after segmentation. Since this problem can be improved by using a higher modulation order, TBS based on the longest repetition for option 6 and the nominal repetition for option 4 should be supported and further discussed. To avoid too high code rate issue, consider the following simple solution: For actual repetitions whose lengths are smaller than a certain degree, the modulation order should be raised to a higher level to guarantee the normal code rate. The certain degree should be related to the length of the longest repetition (option 6) or the nominal repetition (option 4).
Proposal 5: It should be supported to determine TBS based on the nominal PUSCH for Option 4 or the longest PUSCH for Option 6.
Proposal 6: If the above proposal is supported, for actual repetitions whose lengths are smaller than a certain degree, the modulation order should be raised to a higher level to guarantee a proper code rate. The certain degree should be related to the length of the longest repetition (option 6) or the nominal repetition (option 4).
Redundancy Version
In Rel-15, every repetition has the same length, the performance will be best when the transmission order is RV 0, 2, 3, 1. For option 4 and option 6, the length of actual repetitions may be different because of the split, so RV sequence should be designed to reach the best performance. Here the following two options are considered to determine the redundancy version for actual repetitions.
To illustrate the two options, take the following repetition case as an example. For option 4, considering the condition that there are four PUSCH repetitions, and the length of nominal repetition is 5. The third one is split into two repetitions because of the slot boundary. The original third repetition transmits RV3.
·
Option a: Using the reversed order of bits of a RV in the 2nd segment of a nominal repetition. (RV3’ denotes the first half of RV3, denotes the reversed order of bits of RV3)

Figure 5 Option a for the redundancy version of the split repetitions
· Option b: Cycling RVs through the longest repetitions firstly, and RV cycling without RV0 for the remaining segment repetitions. (RV1’ and RV2’ denotes the first half-length of RV1 and RV2 respectively)

Figure 6 Option b for the redundancy version of the split repetitions
Option b has uneven use of different RV number and may transmit the same bits for several times, but it has fewer impact on the specifications than option a.
Proposal 7: Support either option a or option b to determine RV for each actual repetition.
DMRS Assignments for Split Repetitions
In the last meeting, we had discussed the issue about DMRS assignments for split repetitions. Here the solution is updated as follows.
If there is no DMRS after splitting in one repetition, add one column DMRS at the beginning of this repetition.
If there is one or more DMRS(s) after splitting in one actual repetition, reused the original number and position of DMRS firstly, then determine whether to add one column DMRS according to the length of actual repetitions.
As illustrated in Figure 7 and Figure 8, where a nominal repetition contains eight symbols and two columns DMRS. If an actual repetition has more than 5 symbols but less than 7 symbols, add one DMRS at the 5th symbol.

[bookmark: _Ref14289052]Figure 7 The second repetition is split into two actual repetitions in the 6th symbol

[bookmark: _Ref14286503]Figure 8 The second repetition is split into two actual repetitions in the 5th symbol
Proposal 8: For option 4 and option 6, the number and position of DMRS in Rel.15 can be reused with the following modifications. If there is no DMRS after splitting in one repetition, add one column DMRS at the beginning of this repetition. If there is one or more DMRS(s) after splitting in one actual repetition, reused the original number and position of DMRS firstly, then determine whether to add one column DMRS according to the length of actual repetitions.
Conclusions
In this contribution, we discuss the issue about definition of L and K, dynamic indication of repetition number, TBS determination, RV determination of repetitions and DMRS assignments. Observations and proposals are given as follows.
Observation 1: Allow the value of L can be larger than 14 has no obvious advantage but will affect existing specifications.
Proposal 1: L>14 shouldn’t be supported.
Observation 2: For Alt 1 and Alt 2, the same solution for ‘orphan symbol’ may has different impacts.
Observation 3: For Alt 1, the final result of postponing a repetition to avoid the appearance of ‘orphan symbol’ will be the same as dropping the ‘orphan symbol’ since the time window is certain.
Proposal 2: The interpretation of L*K should be handled together with the ‘orphan symbol’ issue.
Proposal 3: For Alt 1, merge the ‘orphan symbol’ with its adjacent repetition. For Alt 2, further discuss whether to merge the ‘orphan symbol’ with its adjacent repetition or postpone a repetition to avoid the appearance of ‘orphan symbol’.
Proposal 4: Introduce a new DCI field to indicate of the nominal number of repetitions.
Proposal 5: It should be supported to determine TBS based on the nominal PUSCH for Option 4 or the longest PUSCH for Option 6.
Proposal 6: If the above proposal is supported, for actual repetitions whose lengths are smaller than a certain degree, the modulation order should be raised to a higher level to guarantee a proper code rate. The certain degree should be related to the length of the longest repetition (option 6) or the nominal repetition (option 4).
Proposal 7: Support either option a or option b to determine RV for each actual repetition.
Proposal 8: For option 4 and option 6, the number and position of DMRS in Rel.15 can be reused with the following modifications. If there is no DMRS after splitting in one repetition, add one column DMRS at the beginning of this repetition. If there is one or more DMRS(s) after splitting in one actual repetition, reused the original number and position of DMRS firstly, then determine whether to add one column DMRS according to the length of actual repetitions.
References
[1] [bookmark: _Ref13841015]“Draft Report of 3GPP TSG RAN WG1 #97 v0.3.0”, Reno, USA, 13th – 17th May, 2019.
[2] [bookmark: _Ref20069112]“Draft Report of 3GPP TSG RAN WG1 #98 v0.2.0”, Prague, Czech Rep, 26th – 30th August 2019.

Microsoft_Visio_2003-2010___1.vsd
�

D

D

D

D

D

U

U

U

U

U

U

U

U

U

0

1

2

3

4

5

6

7

8

9

10

11

12

13

D

D

D

D

D

U

U

U

U

U

U

U

U

U

0

1

2

3

4

5

6

7

8

9

10

11

12

13

Symbol index

Slot n

Slot n+1

Rep2

Rep3

Rep1

Time window

image2.emf
DDDDDUUUUUUUUU

012345678910111213

DDDDDUUUUUUUUU

012345678910111213

Slot nSlot n+1

Symbol index

Rep1Rep2Rep3

Time window

Microsoft_Visio_2003-2010___2.vsd
�

D

D

D

D

D

U

U

U

U

U

U

U

U

U

0

1

2

3

4

5

6

7

8

9

10

11

12

13

D

D

D

D

D

U

U

U

U

U

U

U

U

U

0

1

2

3

4

5

6

7

8

9

10

11

12

13

Symbol index

Slot n

Slot n+1

Rep2

Rep3

Rep1

Time window

image3.emf
DDDDDUUUUUUUUU

012345678910111213

DDDDDUUUUUUUUU

012345678910111213

Slot nSlot n+1

Symbol index

Rep1Rep2Rep3

Time window

Microsoft_Visio_2003-2010___3.vsd
�

D

D

D

D

D

U

U

U

U

U

U

U

U

U

0

1

2

3

4

5

6

7

8

9

10

11

12

13

D

D

D

D

D

U

U

U

U

U

U

U

U

U

0

1

2

3

4

5

6

7

8

9

10

11

12

13

Symbol index

Slot n

Slot n+1

Rep2

Rep3

Rep1

Time window

image4.emf
DDDDDUUUUUUUUU

012345678910111213

DDDDDUUUUUUUUU

012345678910111213

Slot nSlot n+1

Symbol index

Rep1Rep2Rep3

Time window

Microsoft_Visio_2003-2010___4.vsd
�

D

D

D

D

D

U

U

U

U

U

U

U

U

U

0

1

2

3

4

5

6

7

8

9

10

11

12

13

D

D

D

D

D

U

U

U

U

U

U

U

U

U

0

1

2

3

4

5

6

7

8

9

10

11

12

13

Symbol index

Slot n

Slot n+1

Rep2

Rep3

Rep1

Time window

image5.wmf
rev

RV03

oleObject1.bin

image6.emf
012345678910111213012345678910111213

Slot nSlot n+1

Symbol index

Rep1Rep2Rep3Rep4Rep5

RV0RV0RV2RV3'RV03

rev

RV1

Microsoft_Visio_2003-2010___5.vsd
�

0

1

2

3

4

5

6

7

8

9

10

11

12

13

0

1

2

3

4

5

6

7

8

9

10

11

12

13

Symbol index

Slot n

Slot n+1

Rep1

Rep2

Rep3

Rep4

Rep5

RV0

RV0

RV2

RV3'

RV03rev

RV1

image7.emf
012345678910111213012345678910111213

Slot nSlot n+1

Symbol index

Rep1Rep2Rep3Rep4Rep5

RV0RV0RV2RV1'RV2'RV3

Microsoft_Visio_2003-2010___6.vsd
�

0

1

2

3

4

5

6

7

8

9

10

11

12

13

0

1

2

3

4

5

6

7

8

9

10

11

12

13

Symbol index

Slot n

Slot n+1

Rep1

Rep2

Rep3

Rep4

Rep5

RV0

RV0

RV2

RV1'

RV2'

RV3

image8.emf
DM

RS

DM

RS

DM

RS

DM

RS

012345678910111213

DM

RS

012345678910111213

Slot nSlot n+1

Symbol index

Rep1Rep2Rep3

Microsoft_Visio_2003-2010___7.vsd
�

DMRS

DMRS

DMRS

DMRS

0

1

2

3

4

5

6

7

8

9

10

11

12

13

DMRS

0

1

2

3

4

5

6

7

8

9

10

11

12

13

Symbol index

Slot n

Slot n+1

Rep1

Rep2

Rep3

image9.emf
DM

RS

DM

RS

DM

RS

DM

RS

012345678910111213

DM

RS

012345678910111213

Slot nSlot n+1

Symbol index

Rep1

Rep2Rep3

Microsoft_Visio_2003-2010___8.vsd
�

DMRS

DMRS

DMRS

DMRS

0

1

2

3

4

5

6

7

8

9

10

11

12

13

DMRS

0

1

2

3

4

5

6

7

8

9

10

11

12

13

Symbol index

Slot n

Slot n+1

Rep1

Rep2

Rep3

image1.emf
DDDDDUUUUUUUUU

012345678910111213

DDDDDUUUUUUUUU

012345678910111213

Slot nSlot n+1

Symbol index

Rep1Rep2Rep3

Time window

