3GPP TSG RAN WG1 98bis			R1-1910492
Chongqing, China, 14th – 18th October, 2019

[bookmark: Source]Agenda item:	7.2.8.1
Source: 	Samsung
Title: 	Feature lead summary for offline email discussion on UCI omission
[bookmark: DocumentFor]Document for:	Discussion and Decision

[bookmark: _Ref5850594]Introduction
The following was agreed in RAN1#98 [1]:
	The selected UCI omission scheme should meet the following criteria when CSI omission occurs:
1. CSI calculation is identical to that for without omission – otherwise the UE may end up recalculating the CSI if UCI omission occurs.
a. When UCI omission occurs, the associated CQI may not be calculated conditioned on the PMI after omission
2. The occurrence of UCI omission can be inferred from the associated CSI report without any extra signaling.
3. The resulting UCI payload after omission should not be ambiguous (payload ambiguity would require the gNB to perform blind decoding of UCI Part 2).
4. When CSI omission occurs, dropping all NZCs associated with any particular layer should not be done.
Note: CSI omission occurs when the allocated UL resource for UCI is not sufficient for full CSI reporting.

Denote the non-zero LC coefficient (NZC) associated with layer , beam , and FD-basis as . The associated bitmap component (including zero(s)) is.
For the purpose of UCI omission, the parameters in UCI Part 2 is divided into 3 groups where Group n is of a higher priority than Group (n+1), n=0, 1.

When the UE is configured to report NRep CSI reports,
· Group 0 includes at least: SD rotation factors, SD indicator, and SCI(s) for all the NRep reports,
·
[bookmark: MTBlankEqn]For each of the NRep reports, Group 1 includes at least: reference amplitude(s) for weaker polarization, , FD indicator
·
For each of the NRep reports, Group 2 includes at least:
· Note: G1 and G2 exclude the indices associated with the strongest coefficient(s)

In RAN1#98bis, decide the following aspects. If there is no consensus in RAN1#98bis, UCI omission for Rel.16 Type II codebook is not supported in Rel.16 (i.e. UCI omission can be performed via UE implementation).

1. Priority rule for determining G1 and G2: down select from the following:
·

Alt 1.1: LC coefficients are prioritized from high to low priority according to (,l,m) index triplet, the highest priority coefficients belong to G1 and the lowest priority coefficients belong to G2. Priority level is calculated as Prio(,l,m)=2L.RI. Perm1(m)+RI. Perm2(l)+
· FFS: Exact structure of index permutation function Perm1(.) and Perm2(.), including no permutation
·

Alt 1.2: The NZ coefficients are sorted sequentially 0 to KNZ– 1 in the following order, based on lm indexing (layer SD FD), or based on l m indexing (SD layer FD). The group G1 comprises at least firstsorted coefficients, and group G2 comprises the remaining second sorted coefficients.
·

Alt 1.3: LC coefficients are prioritized from high to low priority according to (,l,m) index triplet, the highest priority coefficients belong to G1 and the lowest priority coefficients belong to G2. Priority level is calculated as Prio(,l,m)=2L.RI. Perm1(m)+RI. Perm2(l)+
· FFS: Exact structure of index permutation function Perm1(.) and Perm2(.), including no permutation

2.
Which group(s) belong to: down select from the following
·

Alt 2.1: (only coupled with Alt 1.1) First bits according to Prio(,l,m) value belong in Group 1, last according to Prio(,l,m) value belong in Group 2
·
Alt 2.2: (only coupled with Alt 1.2) Bitmap and coefficients are segmented together into M segments (M = number of FD basis indices). Group 1 contains M1 segments and Group 2 contains M2 segments, where M = M1+M2. Each segment contains the bitmap (sub-bitmap) associated with all RI layers, all SD components and a single FD component and the corresponding combining coefficients. The payload size of Group 1 is given by (N= number of bits for amplitude and phase). The payload size of Group 2 is.
· FFS: Segmentation of sub-bitmap and coefficients per segment
·

Alt 2.3: (only coupled with Alt 1.3) First bits according to Prio(,l,m) value belong in Group 1, last according to Prio(,l,m) value belong in Group 2
· Alt 2.4 (only coupled with Alt 1.1) First RI.LM bits according to Prio(,l,m) value belong in Group 1, last RI.LM according to Prio(,l,m) value belong in Group 2
·
Alt2.5: (applicable to any Alt1.x) Bitmap is included in Group 0
·
Alt2.6: (applicable to any Alt1.x) Bitmap is included in Group 1

Discussion
Taking into account only the valid combinations of priority rule and bitmap location, the following alternatives are available.
Table 1 UCI omission: alternatives
	Scheme
	Supporting companies

	1.1+2.1
	Ericsson (no permutation, 2nd preference), LGE (with permutation, 2nd preference)

	1.1+2.4
	CATT (with permutation)

	1.1+2.5
	Samsung (no permutation), MotM/Lenovo (with permutation)

	1.1+2.6
	Samsung (no permutation, 2nd preference), Nokia/NSB (no permutation), ZTE (with permutation), Qualcomm (no permutation), MotM/Lenovo (with permutation, 2nd preference), NEC (with permutation), Ericsson (no permutation), LGE(with permutation, 1st preference)

	1.2+2.2
	Fraunhofer/HHI, NTT Docomo (2nd preference), vivo (2nd preference), OPPO

	1.2+2.5
	-

	1.2+2.6
	Qualcomm, NTT Docomo

	1.3+2.3
	vivo

	1.3+2.5
	-

	1.3+2.6
	-

Detailed comments from companies are captured below.
Table 2 UCI omission: detailed comments from companies
	Company
	View

	CATT
	In our view, except a predefined rule, either coefficient partitioning or bitmap partitioning does not incur extra UE or gNB effort. Our preference is as follows:
1. Coefficients priority: Alt1.1 is preferred. According to our simulation, in the case of no permutation, the performance loss may be too large since the NZC of some beams or the whole polarization would be dropped. Therefore, permutation is necessary to reduce performance loss.
2. Bitmap partitioning: A2.4 is preferred. Compared with the case of no partitioning, the overhead of Group 1 could be reduced by up to 22%. In case of rank= 1, the CSI omission should not occur because gNB should at least assure enough resource for rank=1 report. As pointed by Filippo, if the allocated resources on PUSCH were not enough to report RI=1, the reported CSI is not meaningful. In case of rank>1, it is simple way that half of the bitmap is dropped according to coefficients priority.
In conclusion, we prefer Alt1.1 with permutation+ Alt2.4.

	Ericsson
	As many companies have already stated, the CSI omission should be seen as an emergency procedure and hence we don’t need to optimize the feature to death, especially if it introduces additional spec complexity. In that spirit, although we initially proposed Alt 2.1, we acknowledge that that the additional overhead savings provided may not motivate the additional spec complexity of splitting up the bitmap in two segments. Therefore, our current preference is Alt 2.6, with the entire bitmap present in G1.
Regarding permutation, first we like to point out that the FD-basis index m=0,…,M-1 is a local index within the indicated FD-basis set , not the global index among the entire FD-basis set k=0,…,N3-1. While it would make sense to permutate the index based on the global index k based on statistical properties of the FD-basis selection, it does not make sense to apply permutation directly to the m index (like the proposed 0, M-1, 1, M-2, …). While we could make a more complex permutation function Perm(k(m)), that seems a bit overkill for this feature (as said, emergency procedure). Since we drop coefficients according to the FD-basis index first, permutating the SD-basis index should have no significant effect on the performance (since G1 will contain coefficients corresponding to all layers and SD-bases). Therefore, we suggest to use no permutation.

	Fraunhofer/HHI
	· Bitmap partitioning: In general, we support partitioning of the bitmaps.
· Alt 1.2 + 2.2 propose a simple grouping scheme, where a bitmap segment of 1 or RI or 2L bits is followed by the non-zero combining coefficient(s) associated with that bitmap segment. This a simple grouping scheme to effectively pack the bitmaps and the combining coefficients.
· When Alt 2.2 is used, the number of combining coefficients that can be packed in G1 is obviously greater than K_NZ/2 when the bit-width of G1 is identical to the bit-width of Alt 1.1 + 2.6. Segmentation of bitmap and coefficients with respect to Alt 1.2 + 2.2 is optimal with respect to packing density and performance compared to the other alternatives.
· Bitmap segmentation is possible for all ranks. As agreed in RAN#97, the FD basis is indicated for all ranks and layers by (N3-1 over Mi-1), requiring that the cyclic shift is performed per layer, irrespective of the rank. Therefore, the strongest coefficient is associated with FD index 0, even for RI=1. Hence, the only difference between RI=1 and RI>1 is the size of the bit indicator for the SCI. Therefore, we do not see any problem with segmenting bitmaps.
· Permutation: Irrespective of the alternatives, we are open to permutation of FD and/or SD indices as it is obvious that strongest coefficients can be placed in G1. Also, this does not incur any additional signaling overhead.
In short, we prefer Alt 1.2+2.2.

	LGE
	1. Priority rule for NZCs
We already understand that UCI omission is for an emergency procedure and it should be designed as simple as possible. From our perspective, omission rule as in Alt 1.1 shows a simple and efficient way for CSI omission. Without any extra signaling issue, we have verified the performance gain with permutation based on SCI(s). Through this approach, the performance loss after UCI omission can be much reduced.
2. Bitmap partitioning
When the bitmap is partitioned based on G1 and G2, it can reduce the payload for UCI omission scenario. However, it may cause ambiguity for decoding at gNB and the amount of benefit is not clear so far as in Alt2.1.
We think it leads extra computation for the corresponding NZC and bitmap to avoid ambiguity. All things considered, bitmap partitioning as in Alt 2.6 (in Group 1) seems reasonable in our opinion.

	MotM/Lenovo
	We think it is important to define some type of UCI omission scheme other than spec-transparent adaptation of the number of non-zero coefficients. On the other hand, we don’t expect CSI omission to occur on a regular basis in a properly configured system and therefore it is not necessary to over-optimize the design at the expense of specification and implementation complexity.
· Our preference for coefficient partitioning is Alt 1.1 with permutation in the FD basis domain only, i.e. only the FD indices, m, are permuted according to Perm1(m). A simple permutation of the form 0,M-1,1,M-2,…, which takes advantage of the clustering of coefficient energy around the dominant tap adds little to no complexity and according to our results offers non-negligible performance gain over the no permutation case.
· The reduction in payload due to partitioning the bitmap across G1 and G2 can enable a lower code to be used for UCI transmission or in the case of Alt 2.2 to increase the number of coefficients that can be sent in G1. However, the additional complexity required doesn’t seem warranted for Alt 2.1,2.3,2.4 where only a reduction in UCI code rate is to be gained. Alt 2.2 on the other is even more complex with the boundary between G1 and G2 coefficient possibly occurring within a bitmap column or even within a coefficient. Our preference for bitmap partitioning is therefore Alt 2.5 or Alt 2.6 (second preference).

	NEC
	Our preference is 1.1+2.6. We can support FD basis permutation as well. Even if the energy of coefficients is evenly distributed in FD bases, any permutation including no permutation will result in the same performance, which means permutation does not degrade performance. However, if we do consider the energy of coefficients are mostly concentrated in edge bases, a simple permutation will improve the performance, and its complexity is trivial since permutation or interleaving is quite mature in NR.

	Nokia/NSB
	From our point of view, CSI omission should be regarded as an emergency procedure, which is used when a UE cannot afford to adapt the CSI report to the available payload, hence it should be kept as simple as possible. In fact, for a more optimised CSI calculation, the spec-transparent adaptation of the number of NZC can be used instead. Therefore, in our view, it does not make much sense to over optimise the omission procedure if this requires significant added complexity.
· Coefficient partitioning. Alt1.1 is our preferred solution. In principle, permutations may be used to exploit the statistical distribution of amplitude of the NZC in both FD and SD domains. For example, the “edge” FD components are statistically more significant than the “centre” ones. However, in practice, a meaningful permutation scheme should depend on the selected FD basis, i.e., on the distribution of NZC in the bitmap. This looks like an overdesign for the very limited purpose of omission. Therefore, for the sake of simplicity, we are ok with no permutation.
· Bitmap partitioning. The overhead reduction of G1 achievable with bitmap partitioning is, in our view, rather modest, less than 8% of the total size of G1 according to our calculation. However, partitioning the bitmap would require extra complexity in calculating the priority function for all the bitmap bits and not just the NZC. Therefore, our preference is to send the whole bitmap in G1 (Alt2.6). Having it in G0 (Alt2.5) has the only purpose of allowing decoding the SCI when RI=1 and both G1 and G2 are omitted, which should never happen in practice. In fact, if the allocated resources on PUSCH were not enough to report RI=1, the gNB should not expect any meaningful CSI reporting anyway.
In conclusion, our preference is for Alt1.1 + 2.6

	NTT Docomo
	We believe that it is better to define a new CSI omission procedure for Type II CSI in Rel. 16 since CSI omission procedure in Rel. 15 is not applicable for Type II CSI in Rel. 16. Further, we think that it is better to have a simple and clean solution for CSI omission. In particular, since CSI omission is an emergency procedure which will be triggered when allocated PUSCH resources are not enough to multiplex both data and CSI, there is no point of over optimizing it. Hence, in the attached document, we have captured Alt 1.2 + Alt 2.6 as our main preference.
However, in case if the implementation complexity is not that high, we think bitmap partitioning as proposed in Alt 2.2 where each bitmap partition is followed by its associated NZC, is better to be considered. This is because, with this procedure, more useful information can be captured within limited PUSCH resources compared to the cases with including bitmap in its entirety within G0 or G1. So, in the attached document, we have captured this as our 2nd preference.

	OPPO
	No detailed comment

	Qualcomm
	In our view, the essential ingredient of UCI omission are two-fold: 1) providing information to the gNB that the UL resource is insufficient, and 2) not increasing UE implementation complexity. It is preferred to have simple and clean solution. Coefficient permutation and bitmap partitioning are over-optimization, but add on UE implementation complexity and spec effort.
Hence, among the UCI omission alternatives, we prefer either of the following:
· Alt1.1 (with no permutation) + Alt2.6
· Alt1.2 + Alt2.6

	Samsung
	We prefer a simple solution (similar to Rel. 15). We do not see any need for a complicated and over-optimized solution for UCI omission. In particular,
· Regarding permutation, benefits and need for any permutation is unclear. If the purpose of permutation is to group stronger coefficients in G1 and weaker in G2, then it is unclear how this can be done without any additional signaling. Since we agreed not to have any additional signaling, we don’t think there is a need for any arbitrary permutation. So, Alt 1.1 with no permutation is reasonable in our view.
· Bitmap partitioning: there is an issue with bitmap partitioning in case of rank 1, i.e., the strongest coefficient can’t be determined if a group is omitted (since K_NZ will not [be] known due to bitmap partitioning). Also, the overhead saving may not be much if K_NZ is small. So, Alt2.5 or 2.6 is preferable for a clean/simple solution.
In summary, we prefer Alt 1.1 + 2.5 or 2.6 with no permutation.

	vivo
	No detailed comment

	ZTE
	Generally, we see the benefit of supporting UCI omission. However, if it causes too much specification effort, performance loss or UE processing effort, the benefit would be reduced.
Re the grouping of coefficients, we think the simple way as in Alt 1.1 is sufficient for UCI omission with good performance. Further, we see the benefit of using permutation, with which statistically the weaker coefficients will be omitted. Hence the performance loss after UCI omission can be somehow minimized. In fact, permutation can be just a fixed rule of mapping coefficients depending on SCI. That is, it will not cause extra UE processing effort compared with the natural mapping order.
Re where to put bitmap, we tend to agree that the gain (number of bits) for omitting a part of bitmap is limited, since we can only omit the bitmap based on the worst case, in order not to cause ambiguity for gNB decoding. Between Alt 2.5 (bitmap in Group 0) and Alt 2.6 (bitmap in Group 1), we think it makes more sense to put bitmap in Group 1 where the FD indicator locates. Without knowing the FD indicator, the information delivered from bitmap is not much useful. Hence it does not make much since to omit FD indicator but reserve bitmap.

Based on the offline discussion, the following observation and offline agreements were made:
	
Observation: On UCI omission for Rel.16 Type II codebooks
· On G1/G2 priority rule, Alt1.2 with layerSDFD indexing is equivalent to Alt1.1 without permutation. Therefore, there is consensus on the support for:
· LayerSDFD (lm) indexing (note: this simply narrows down the choices for Prio(.) function)
· Priority level definition: If priority levels of two LCCs and are such that , LCC has a higher priority over
· Three alternatives remain to finalize the UCI omission scheme:
· Alt A (cf. Alt1.1+2.6 no permutation, currently supported by 5 companies).
·

G1 comprising the highest priority coefficients and G2 comprising the lowest priority coefficients
·
Priority level is calculated as Prio(,l,m)=2L.RI.m+RI.l+ (i.e. no permutation), and bitmap is included in G1
· Main arguments from the proponents include simplicity considering that UCI omission should only be used in case of emergency and that the overhead saving from bitmap partitioning may not be significant
· Alt B (cf. Alt1.1+2.6 with permutation, currently supported by 5 companies).
·

G1 comprising the highest priority coefficients and G2 comprising the lowest priority coefficients
·
Priority level is calculated as Prio(,l,m)=2L.RI. Perm1(m)+RI. Perm2(l)+, and bitmap is included in G1
· FFS: the functions Perm1(m) and Perm2(l)
· Main arguments from the proponents include the additional robustness from preserving stronger LCCs even in emergency situation and that the overhead saving from bitmap partitioning may not be significant
· Alt C (Alt1.2+2.2, currently supported by 5 companies).
·

G1 comprising more than highest priority coefficients and G2 comprising the remaining (<) lowest priority coefficients for the same bit-width as G1 of Alt A/B
· Priority level is calculated as Prio(,l,m)=2L.RI.m+RI.l+ (i.e. no permutation), and bitmap location is according to Alt2.2 (cf. agreement in RAN1#98)
· Main arguments from the proponents include simplicity considering that UCI omission should only be used in case of emergency and some additional overhead saving from bitmap partitioning

Offline agreement: On UCI omission for Rel.16 Type II codebooks
· Priority level definition: If priority levels of two LCCs and are such that , LCC has a higher priority over
· In RAN1#98bis, select one from the following 3 alternatives:
· Alt A (cf. Alt1.1+2.6 no permutation).
·

G1 comprising the highest priority coefficients and G2 comprising the lowest priority coefficients
·
Priority level is calculated as Prio(,l,m)=2L.RI.m+RI.l+ (i.e. no permutation), and bitmap is included in G1
· Alt B (cf. Alt1.1+2.6 with permutation).
·

G1 comprising the highest priority coefficients and G2 comprising the lowest priority coefficients
·
Priority level is calculated as Prio(,l,m)=2L.RI. Perm1(m)+RI. Perm2(l)+, and bitmap is included in G1
· FFS: the functions Perm1(m) and Perm2(l)
· Alt C (cf. Alt1.2+2.2).
·

G1 comprising more than highest priority coefficients and G2 comprising the remaining (<) lowest priority coefficients for the same bit-width as G1 of Alt1.1
· Priority level is calculated as Prio(,l,m)=2L.RI.m+RI.l+ (i.e. no permutation), and bitmap location is according to Alt2.2 (cf. agreement in RAN1#98)

After the formulation of the offline agreement was finalized, CATT proposed to include Alt1.1+2.4 as “Alt D” for down-selection in RAN1#98bis for the following reason:
	 We analyzed the UCI omission for different alternatives. The result is illustrated in the following figure. In the figure, the Y-axis is defined as the ratio between PUSCH capacity and UCI payload assuming rank=1. From the figure, we can see that when the ratio falls within [1.2 1.4], Alt2.1-Alt-2.3 will drop both G1 and G2, while Alt2.4 only drops G2. That is, within this range Alt 2.4 could still provide some meaningful CSI. All the alternatives are similar when the ratio falls out of the range.
Based on the analysis, we see technical merit of Alt 2.4. It is not fair to rule out some candidates without technical judgment before the meeting.

[image: cid:image001.png@01D57491.72CFF950]

Sustained email discussion took place among several companies (CATT, Ericsson, Nokia/NSB, NTT Docomo, Samsung, and ZTE), which can be briefly summarized as follows:
· From the comments given by 6 companies (along with the response from CATT), the claimed/perceived advantage of Alt1.1+2.4 in providing more meaningful UCI upon omission is unclear at least for the following reasons:
· [bookmark: _GoBack]The evaluated scenario (rank-1) and range of PUSCH capacity may not be representative of typical cases where UCI omission is used.
· Since UCI omission is intended to be used in case of emergency (given that Rel.16 Type II codebook possesses an inherent overhead adjustment mechanism via KNZ,TOT), over-optimization which leads to additional UE complexity (incurred by 1.1+2.4) is unwarranted.
· It was also pointed out that the mismatch between LCC and bitmap partitioning is inherent and can only be reduced (not removed) using some form of permutation.
· Other than 1.1+2.4 (supported only by CATT), six other single/dual-company proposals (1.1+2.1 with and no permutation, 1.1+2.5 with and no permutation, 1.2+2.6, and 1.3+2.3) have been opted out for the sake of progress. Therefore, including 1.2+2.4 along with the three alternatives (A, B, and C) without including those other six opted-out schemes has been perceived as unfair not only by the FL, but also by other companies.
Therefore, the offline agreement (with three alternatives for down-selection – Alt A, B, and C) remains unchanged.

References
[1] [bookmark: _Ref536662397]3GPP RAN1, RAN1#98, Chairman Notes

image1.wmf
{0,1,...,1}

RI

l

Î-

oleObject1.bin

image2.wmf
{0,1,...,21}

lL

Î-

oleObject2.bin

image3.wmf
{0,1,...,1}

mM

Î-

oleObject3.bin

image4.wmf
()

,

lm

c

l

oleObject4.bin

image5.wmf
()

,

lm

l

b

oleObject5.bin

image6.wmf
(

)

{

}

()

,1

, ,,

lm

clmG

l

l

Î

oleObject6.bin

image7.wmf
(

)

{

}

()

,2

, ,,

lm

clmG

l

l

Î

oleObject7.bin

image8.wmf
/2

TOT

NZ

K

éù

êú

oleObject8.bin

image9.wmf
/2

TOT

NZ

K

êú

ëû

oleObject9.bin

image10.wmf
()

,

lm

c

l

oleObject10.bin

image11.wmf
2

NZ

K

oleObject11.bin

image12.wmf
/42

TOTTOT

NZNZ

KKLL

êú

-´

ëû

oleObject12.bin

image13.wmf
/42

TOT

NZ

KLL

êú

´

ëû

oleObject13.bin

image14.wmf
()

,

lm

l

b

oleObject14.bin

image15.wmf
RI.2

2

TOT

NZ

K

LM

-

oleObject15.bin

image16.wmf
2

TOT

NZ

K

oleObject16.bin

image17.wmf
.2

2

TOT

NZ

K

RILMN

+

oleObject17.bin

image18.wmf
RI.2/42

TOT

NZ

LMKLL

êú

-´

ëû

oleObject18.bin

image19.wmf
/42

TOT

NZ

KLL

êú

´

ëû

oleObject19.bin

oleObject20.bin

oleObject21.bin

oleObject22.bin

oleObject23.bin

oleObject24.bin

oleObject25.bin

oleObject26.bin

oleObject27.bin

oleObject28.bin

oleObject29.bin

oleObject30.bin

oleObject31.bin

oleObject32.bin

oleObject33.bin

oleObject34.bin

oleObject35.bin

oleObject36.bin

oleObject37.bin

image20.png

