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Introduction
In RAN1 #92b, the following agreements have been made [1]:
· Adopt Figure 1 as the general block diagram of multi-user receiver for UL data transmissions. Besides, 
· The algorithms for the detector block (for data) can be e.g. MMSE, MF, ESE, MAP, MPA, EPA. 
· The interference cancellation can be hard, soft, or hybrid, and can be implemented in serial, parallel, or hybrid.
· The interference cancellation block may or may not be used. 
· The input to interference cancellation may come directly from the detector for some cases
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[bookmark: _Ref513826715]Figure 1. A high-level block diagram of multi-user receiver
In RAN1-94, it was agreed to capture complexity using the following template [3]
Agreements:
· The following table for computation complexity analysis of the receiver as the starting point, entries can be updated till RAN1#94bis. 
Table I	Template of Receiver Computation Complexity breakup 
	[bookmark: _Hlk525927388]Receiver component
	Detailed component
	Computation in parametric number of usages, O(.) analysis, [impact factor]

	
	
	Receiver type 1
	Receiver type 2
	…

	Detector

	UE detection 
	
	
	

	
	Channel estimation
	
	
	

	
	Rx combining, if any
	
	
	

	
	Covariance matrix calculation, if any
	
	
	

	
	Demodulation weight computation, if any
	
	
	

	
	UE ordering, if any
	
	
	

	
	Demodulation, if any
	
	
	

	
	Soft information generation, if any
	
	
	

	
	Soft symbol reconstruction, if any
	
	
	

	
	Message passing, if any
	
	
	

	
	Others
	
	
	

	Decoder
	LDPC decoding
	
	
	

	Interference cancellation
	Symbol reconstruction(Including FFT operations for DFT-S-OFDM waveform), if any
	
	
	

	
	LLR to probability conversion, if any
	
	
	

	
	Interference cancellation
	
	
	

	
	LDPC encoding, if any
	
	
	

	
	Others
	
	
	


· The impact factor is to be estimated based on the analysis of computation, memory size, hardware and software implementation, etc. 
· If/How and which entries are to be combined/compared in order to get the total complexity estimate is FFS. 
· Companies may provide the impact factor
· The impact factor is for each cell 
· The rows in the above table are subject to potential refinement, e.g., adding new row(s), merge some rows, etc.
In this contribution, we provide a general framework for NOMA UL receiver, with a focus on linear multi-user detector schemes. In particular, we discuss the complexity of ESE and LMMSE receivers.

Linear Receivers for Linear-Spreading-based NOMA schemes
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[bookmark: _Ref506561578][bookmark: _Ref506561574]Figure 2. General Diagram for Linear NOMA Receiver for Linear Spreading NOMA Schemes

As shown in Figure 1, even though the details of the NOMA receivers for different NOMA transmission schemes can vary, the NOMA receiver schemes share the same high-level structure. Figure 2 shows a detailed description of the general NOMA receiver diagram. Linear spreading schemes such as RSMA can be used with different receiver schemes, for example ESE and MMSE. This is an important property as it provides the implementation with flexibility to choose and optimize the receiver to best match the target scenario and desired complexity and performance characteristics.
Observation 1: Linear-spreading NOMA schemes such as RSMA provide good performance with different receiver choices, providing implementation flexibility.
Proposal 1: NOMA schemes should be able to utilize different receiver types to provide implementation flexibility.
The NOMA receiver consists of three parts. The first part is multi-user detector where the superposed received signal is jointly processed across the UEs to derive the LLR for each UE. The example of multi-user detectors includes LMMSE/ESE/MF/MPA depending on NOMA transmission schemes. The second part of channel decoder which receives LLR from multi-user detector and decode the transmitted codeword. The output from the channel decoder can be decoded codeword in the case of successful decoding. It can be also intermediate LLR for each bit refined through the message passing decoding. Third part is the iteration between multi-user detectors and LDPC decoders. They can exchange both soft-LLR information and hard decision information. When they exchange soft-LLR, soft interference cancellation at multi-user detector is feasible. We will call this as turbo iteration or soft interference cancellation. When they only exchange hard-decision, we will call this as hard interference cancellation. In turbo iteration, multi-user detector and channel decoder exchanges LLR information. Interference cancellation can be performed both parallelly and successively.
Since outer iterations and LDPC decoder are straightforward and not in the scope of this contribution, we will focus on multi-user detector in the rest of the section. Especially, we will focus on ESE (elementary signal estimator) and LMMSE (linear minimum square error estimator). 
Without loss of generality, we can focus on single symbol processing. Suppose that there are  many users and  many resources (spreading factor). The received signal at resource  can be written as

where  is the channel coefficient corresponding to resource  from user ,  is the transmitted signal by user  on resource , and . 
For linear spreading codes, each user is assigned a spreading code sequence. Let   be the ’th coefficient of the spreading code for user . Suppose that all users share the same modulation alphabet M. Then,  for  where  M is the transmitted symbol by user . Now, we can write the received vector 

where , , and  is the  matrix with entries . Let  denote the ’th column of matrix .
Multi-user detectors estimate the LLR for  based on .

MF/ESE Multi-User Detector
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Figure 3. Diagram for ESE Multi-User Detector

MF (matched filter) based multi-user detector is well known, and ESE can be thought as a generalization of MF which can accommodate soft-interference cancellation. Therefore, in this section, we will focus on ESE multi-user detector and leave MF as a degenerated case.
ESE multi-user detector first compress the received signals to scalar values for each UE by MF. The output of the matched filter can be written as

To benefit from soft information computed at channel decoder, we can apply elementary signal estimator to  which approximates signal and interference as Gaussian random variables. More explicitly, for user 

where  is residual interference plus noise. Then,  is approximated as a Gaussian random variable which can be described by mean and variance. We can see that the mean and variance of  is given as follows:


and  and  are the a priori mean and variance for the symbol transmitted from user , which can be computed using a priori bit LLRs.
Now both  and  are approximated as Gaussian random variables. LMMSE estimation can be used to estimate  from . From the estimation, LLR for each bit can be derived from conventional marginalization.
Here, we can notice that ESE multi-user detector without MF can be also used without symbol spreading. For random symbol interleaver cases, ESE multi-user detector can be applicable with an assumption of . ESE multi-user detector is also applicable for bit level interleaving cases.

It can be also shown that the computation complexity of ESE multi-user detector scales as  for  UEs and spreading factor of .

	MU Detector
	Computation Complexity

	ESE
	



LMMSE Multi-User Detector
Interference cancellation in an MMSE multi-user detector (MUD) is typically either serial or parallel. In serial interference cancellation (SIC), the UE transmitted signals are estimated sequentially in order of decreasing received signal quality and the total received signal y is updated immediately after each UE’s signal is estimated. In parallel interference cancellation (PIC), the transmitted signals for all UEs are estimated and then the total received signal y is updated. In both SIC and PIC, the multiple iterations can be performed and the MUD stops iterating either when all UE transmissions have been successfully decoded, or when a maximum number of iterations is reached.
The receiver used for the RSMA link-level simulations in [8] uses hybrid, or modified, interference cancellation (HIC) that is a variant of PIC. In HIC, an outer iteration starts as in PIC where the signals for all UEs are estimated y is updated accordingly. After this step, HIC removed all UEs whose transmissions were successfully decoded from the UE pool  and the following iteration starts with a reduced number of UEs, lowering MUD complexity. Figure 4 is a flow chart illustrating the operation of hybrid interference cancellation.
Observation 2: hybrid interference cancellation reduces complexity by reducing the number of UEs to decode per iteration in subsequent MUD iterations.
Figure 5 illustrates the outer loop of LMMSE multi-user detector. An LMMSE estimator is used to estimate the mean and variance of the transmitted symbols for each UE starting from the received signal. In each iterator, the mean and variance are estimated and used to generate LLRs that are then passed to the LDPC decoder. The output of the LPDC decoder is used to generate new mean and variance values for the transmitted symbols that are then passed back to the LMMSE estimator. 



[bookmark: _Ref526593397][bookmark: _Ref526593384]Figure 4 LMMSE MUD with hybrid IC
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[bookmark: _Ref506565322]Figure 5. Diagram for LMMSE Multi-User Detector

Let  contain the a priori mean  for each UE’s transmitted symbol before spreading. Also, let  be the diagonal matrix containing the a priori variance of each UE’s transmitted symbol before spreading, , on the diagonal and zeros elsewhere. Both the prior mean and the prior variance are derived from the decoder output. The output of the LMMSE estimator is the mean and variance vectors, and can be computed as
, and
).

This LMMSE estimation is applied to each of the pre-spreading symbols.
Based on the LMMSE output, the receiver generates extrinsic bit LLR values for channel decoder by marginalization. Channel decoding will be performed for each UE, completing an outer iteration.
In the following, the complexity of the LMMSE estimation and associated operations is analyzed.
[bookmark: _Ref528942311]General Complexity of The LMMSE Receiver with Hybrid IC
Based on the summary in [11], only complex multiplications and divisions are included in the final complexity summary. In this analysis, we discuss all operations first, the provide a total accounting for complex multiplications only.
In HIC, UEs are removed from the UE pool if their transmissions are successfully decoded, reducing the number of operations required per iteration. For this analysis, we assume that  are the be decoded in an outer iteration .
The LMSSE estimation equations can be mapped to different functional components. Starting with the mean value calculations per pre-spreading symbol:
.

Since the estimation is performed once per pre-spreading symbol, it is performed  times per iteration.
The covariance matrix is calculated by , where:
·  is the  identity matrix and  is a scalar corresponding to the noise variance.
·  is 
·  is a  diagonal matrix with real entries.
Therefore, the covariance matrix requires  complex operations. The dimension of the covariance matrix is  and inverting it requires  complex operations. Therefore, the total number of complex multiplications per iteration to calculate the covariance matrix and invert it is

We note that this only differs by a factor of  from chip-wise MMSE.
For RSMA, it was shown that with  for  antennas and,  for  antennas to achieve target performance levels [8].  Therefore, the size of the covariance matrix is limited to  for 2 antennas and  for 4 antennas. Furthermore, matrix inversion of such small matrices has been widely deployed. In addition many commonly known methods to ensure numerical stability can be utilized if needed. MMSE receivers are also used for MIMO and MU-MIMO receivers as well. MU-MIMO involves inverting a matrix of comparable size.
Observation 3: RSMA can limit the covariance matrix size to  or .
Observation 4: MMSE receivers has been widely deployed and many methods are available to ensure numerical stability if needed.
Observation 5: Matrix inversion is common to both linear spreading based NOMA schemes and MU-MIMO and can be of comparable size in both cases.
To calculate :
· The product  is already calculated and does not require any further operations.
· Multiplying by the inverse of the covariance matrix requires  complex operations per pre-spreading symbol. Per iteration, the number of complex multiplications becomes


The demodulation involves multiplying  by :
· Performing the  product requires  complex operations
· The subtraction it from  is the cancellation step and requires  complex subtractions.
· Performing the final product requires  complex operations.
· The total per iteration is

Finally, calculating  requires  complex additions per pre-spreading symbol and per iteration requires  additions and no multiplications.
Next, the posterior variance value calculation: :
· The product  was already calculated as part of the mean-value calculations.
· Multiplying by  requires  complex operations.
· Multiplication by the real and diagonal  requires  real multiplications.
· Finally, the subtraction of the diagonal from  requires  operations.
· The total per iteration is

This can be further simplified since only the diagonal entries are used.
Converting the LLRs from the LDPC decoder output to prior mean and variance values for the following iteration involves only real operations, whose count is , where  is the number of UEs that were not successfully decoded. The output from the  successfully decoded UE is not used for prior mean and variance calculation, but is used to reconstruct the transmitted signal which is then cancelled from the received signal using  looks ups and sign changes and  complex subtractions.
Generating LLRs from posterior mean and variance requires  real operations.
[bookmark: _Ref528942312]Complexity Reduction in the First Outer Iteration
In the first outer iteration, the prior mean and variance are initialized to constant values: all-zeros and all-ones respectively.  and  become an all-zero vector and the identity matrix, respectively, and the MMSE equations for the first iteration are reduced to
, and
).

The channel estimate does not vary between the  OFDM symbols for the same group of REs (. Therefore,  and  do not change between OFDM symbols. The complexity analysis for the first iteration is as follows. The results are provided for the entire iteration, not per pre-spreading symbol.
Calculating the covariance matrix and inverting it requires
  complex multiplications.
Multiplying  by   requires
	complex multiplications.
Demodulation requires
	 complex multiplications.
The posterior variance calculation reuses already-calculated values and requires an additional
	 complex multiplications.
This can be further simplified since only the diagonal entries are used.
Observation 6: LMMSE receiver complexity can be significantly reduced by exploiting the constant priors in the first iteration.
Summary
Table 1 summarizes the complexity analysis from Sections 2.2.1 and 2.2.2 and provides the computational complexity for the key receiver components across an average of  iterations.
The following additional notation is used:
·  average number of IC iterations.
·  average number of UEs processed per iteration.
·  average number of UEs per IC iteration excluding the first iteration.
·  average number of successfully decoded UE per IC iteration.
·  average number of UEs that were not successfully decoded per IC iteration.
[bookmark: _Ref528942271]Table 1 Total complexity of the LMMSE MUD with hybrid IC across all iterations
	Receiver component
	Detailed component
	Computation in parametric number of usages, O(.) analysis, [impact factor]

	
	
	LMMSE with Hybrid IC

	Detector

	Covariance matrix calculation, if any
	


	
	Demodulation weight computation, if any
	


	
	Demodulation, if any
	



	
	Soft information generation, if any
	Real: 

	
	Soft symbol reconstruction, if any
	

	Decoder
	LDPC decoding
	Usage: 

	Interference cancellation
	LLR to probability conversion, if any
	Real: 

	
	Interference cancellation
	Complexity of addition ignored

	
	LDPC encoding, if any
	Buffer shifting: 
Addition: 



Numerical Complexity Example
An example case was agreed in [13] to provide numerical values for complexity. The agreed parameters are
	Category
	Parameter
	Notation
	Value

	General
	Number of receive antennas
	
	2 or 4

	
	Number of data resource elements 
	
	864

	
	Number of users
	
	12

	MMSE and EPA related
	Spreading length
	
	4

	MMSE-hard IC specific
	Number of decoding for MMSE-hard IC
	
	 for IRC;
 for hard-IC

	Channel coding related
	Average column weight of LDPC PCM
	
	3.43

	Channel coding related
Soft IC specific
	Average row weight of LDPC PCM
	
	6.55

	
	Number of information bits in a code block
	
	176

	
	Number of coded bits of a block
	
	432

	
	Number of inner iterations of LDPC decoding
	
	20 

	
	Number of outer iterations between detector and decoder
	
	5 (for ESE), 3 (for EPA)

	EPA specific
	Number of inner iterations inside detector
	
	3

	EPA specific
User detection & channel estimation related
	Number FN nodes (or resource elements) connected to each user
	
	2

	
	Number of user connected to one resource element
	
	6

	
	Modulation order
	
	3

	
	Maximal number of DMRS antenna ports 
	
	12

	User detection & channel estimation related
	Total number of DMRS REs for initially estimated channel
	
	12

	
	Total number of REs for DMRS, e.g., length of DMRS sequence
	
	24



For RSMA, using  instead of 4 provides the best performance. Therefore, this section will use . The following parameters are also obtained for the LMMSE receiver with hybrid-IC to achieve a BLER of approximately 10% for Case 2 (the above example case with 2 Rx antennas).
Table 2 Additional parameters for the LMMSE receiver with hybrid IC
	Parameter
	Value

	
	4.7

	
	5.8

	
	4.1

	
	2.3

	
	3.5



Table 3 provides the numerical results for the example case.
[bookmark: _Ref529888148][bookmark: _Ref529888134]Table 3 Numerical Complexity Example
	Receiver component
	Detailed component
	Computation in parametric number of usages, O(.) analysis, [impact factor]

	
	
	LMMSE with Hybrid IC

	Detector

	Covariance matrix calculation, if any
	105,432

	
	Demodulation weight computation, if any
	210,033

	
	Demodulation, if any
	135,419

	
	Soft information generation, if any
	Real: 8,325

	
	Soft symbol reconstruction, if any
	18,680

	Decoder
	LDPC decoding
	Usage: 27.3

	Interference cancellation
	LLR to probability conversion, if any
	Real: 28,507

	
	Interference cancellation
	Complexity of addition ignored

	
	LDPC encoding, if any
	Buffer shifting: 3,490
Addition: 38,732



On MPA Complexity
A multi-user detector utilizing the message passing algorithm (MPA) exchanges messages between variable nodes, corresponding to UEs, and factor nodes, corresponding to REs. There are also inner iterations between the LDPC decoder and variable nodes.
The largest source of complexity in MPA is the factor node update:
, where
.
The  calculation has exponential complexity in , the number of UE sharing an RE: , where  is the modulation constellation size. In [12], it was reported that  can be as large as 64-QAM. For , it can be 3 when 6 sparsity patterns are used or 5 when 15 sparsity patterns are used with a single transform matrix used. To increase the MA signature pool size beyond the number of sparsity patterns, more transformation matrices can be used [12], linearly increasing the value of  and exponentially increasing MPA complexity. For example, to support 24 MA signatures with 6 sparsity patterns, 4 transform matrices are used and . This exponential complexity indicates that MPA is not a practical algorithm.
Observation 7: MPA complexity increases exponentially with , leading to very high complexity not suitable for practical implementations.
High-level Receiver Complexity Comparison
The last complexity component of decoding (per outer iteration) one symbol transmitted from all users is given in Table 1, is the modulation alphabet size, is the number of internal iterations on the factor graph for MPA algorithm, and  is the number of users transmitting on the same resource. 

	NOMA Receiver
	Computational Complexity (per Outer Iteration)

	LMMSE
	

	ESE
	

	MPA
	



Table 1: Computational Complexity comparison for different NOMA receivers

As seen from this table, the computational complexity of MPA algorithm scales exponentially in  . Therefore, when large number of UEs are colliding on the same resources, the MPA computational complexity can be much larger than those of LMMSE and ESE which scales polynomially on the number of UEs and spreading factor.

The entire receiver complexity can be quantified based on the multi-user detection/demodulation (MUD) and interference cancellation (IC) algorithms. The entire complexity of receiver (excluding DMRS processing) can be represented by:
(MUD & LDPC decoding complexity per outer iteration) × (# of outer iteration for IC)
Therefore, quantification of the receiver complexity can be split into two steps:
· Firstly, quantify multi-user detector/demodulator (MUD) complexity;
· Secondly, account for LDPC decoding complexity and the number of outer iterations between MUD and LDPC decoders.

Since LDPC decoding complexity is already extensively studied in NR Rel-15 [6], receiver complexity analysis for NOMA schemes can focus on the multi-user detector/demodulator complexity analysis.
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[bookmark: _Ref506556546]Figure 6: Computational Complexity of Multi-User Detectors

Figure 6 shows the computational complexity for different types of multi-user detectors for different spreading factors when the overloading factor is fixed as 150%. We can notice that the message passing based non-linear algorithms suffers from large computational complexity scaling as the spreading factor and the number of UEs grows. 
Observation 8: Linear multi-user detectors (LMMSE/ESE/MF) have much lower complexity compared to non-linear multi-user detectors (MPA/MAP).
On Reusing the NOMA Receiver for OMA UEs
The complexity discussion in 3GPP and target scenarios assume that NOMA will have utilized narrower bandwidth serve fewer UEs compared to the full bandwidth of the OMA system. Reusing the NOMA advanced receiver with OMA (legacy) UEs was brought up in [9] and [10]. However, one aspect not discussed there is that the number of UEs and utilized REs is expected to be significantly larger for OMA UEs compared to the NOMA UE scenarios. This would lead to a significant increase the receiver complexity when extended to OMA-UE scenarios compared to being limited to the NOMA-UE scenarios.
Observation 9: OMA (legacy) UE scenarios are expected to have significantly more UEs and REs, increasing the NOMA receiver complexity if extended to cover those OMA scenarios.
Summary
In this contribution, we discussed receivers for NOMA and made following observations.
Observation 1: Linear-spreading NOMA schemes such as RSMA provide good performance with different receiver choices, providing implementation flexibility.
Observation 2: hybrid interference cancellation reduces complexity by reducing the number of UEs to decode per iteration in subsequent MUD iterations.
Observation 3: RSMA can limit the covariance matrix size to  or .
Observation 4: MMSE receivers has been widely deployed and many methods are available to ensure numerical stability if needed.
Observation 5: Matrix inversion is common to both linear spreading based NOMA schemes and MU-MIMO and can be of comparable size in both cases.
Observation 6: LMMSE receiver complexity can be significantly reduced by exploiting the constant priors in the first iteration.
Observation 7: MPA complexity increases exponentially with , leading to very high complexity not suitable for practical implementations.
Observation 8: Linear multi-user detectors (LMMSE/ESE/MF) have much lower complexity compared to non-linear multi-user detectors (MPA/MAP).
Observation 9: OMA (legacy) UE scenarios are expected to have significantly more UEs and REs, increasing the NOMA receiver complexity if extended to cover those OMA scenarios.
Proposal 1: NOMA schemes should be able to utilize different receiver types to provide implementation flexibility.
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