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1 Introduction
As a justification of the NR SI, the SID underscored the potential benefits of NOMA transmission in [1]:
· The benefits of NOMA, particularly when enabling grant-free transmission, may encompass a variety of use cases or deployment scenarios, including eMBB, URLLC, mMTC.
· In RRC_CONNECTED state, it saves the scheduling request procedure assuming UE is already uplink synchronized.
· In RRC_INACTIVE state, data can be transmitted even without RACH procedure or with 2-step RACH.
· The saving of the signaling naturally also saves UE’s power consumption, reduces latency and increases system capacity.
According to the agreements in [2-6], the following metrics will be adopted for link level evaluation:
· Performance Metrics
a. BLER vs. per UE SNR for given combination of per UE spectral efficiency (SE) and total number of UEs
b. Sum throughput vs total SNR at given BLER, for given combination of per UE SE and total number of UEs
c. Maximal coupling loss (MCL)

· Implementation Metrics
a. PAPR or cubic metric
b. Receiver complexity and processing latency
After RAN1-94b, companies have conducted LLS evaluations for both synchronous and asynchronous NOMA transmissions for different deployment scenarios [7]. Besides, different PHY abstraction methods have been proposed for different NOMA receivers [8].

In this contribution, we present the SLS and LLS results of ML-RSMA. The PHY abstraction method proposed for LMMSE Hard-IC (Section 2.1.1, [8]) have been used in our SLS, which indicate that ML-RSMA provides gains in user-perceived throughput as compared to an orthogonal MU-MIMO baseline in grant-free and grant-based transmissions.  In addition, the link level performance for ML-RSMA have been evaluated for realistic channel estimation, inter-cell interference and asynchronous transmissions [9]. Both SLS and LLS results have demonstrated ML-RSMA is a scalable, flexible and robust transmission scheme for NOMA. It is capable of supporting different SE and overloading ratios for both synchronous and asynchronous NOMA transmissions. However, the gain from NOMA can become limited if PDCCH capacity becomes the bottleneck. Finally, the cross evaluation results for SCMA/EPA are shown, together with some observations on its PHY abstraction method.


2  Overview
2.1 LLS Evaluation Scenarios
Table 1 summarizes the use cases and operation modes of NR NOMA. In particular, the highlighted features in the third column reflect the major benefits of NOMA [1], which should be considered in the design, evaluation and comparison of NOMA Tx/Rx schemes. 

[bookmark: _Ref510797561]Table 1: NR NOMA Use Cases and Features Supported by Different Operation Modes
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Observation 1 
· When the network operates in grant-based mode, transmission schemes proposed for NOMA can be applied to MU-MIMO as well. The gain of NOMA over MU-MIMO in spectral efficiency is questionable, especially for underloading scenarios.
· When the network operates in grant-free mode and the UL access is contention-free, the gain of NOMA over MU-MIMO in spectral efficiency is questionable.
· The most significant gain of NOMA over MU-MIMO can be achieved in the following scenarios:
· contention-based, grant-free transmission
· small data transmission from RRC_INACTIVE state

Proposal 1: NR NOMA solutions achieving performance gains over NR Rel-15 MU-MIMO should be prioritized in the study and evaluation.

[bookmark: _Hlk510804222]Proposal 2: For synchronized NOMA transmission, TX solutions incapable of UE overloading and/or unsuitable for scalable configuration should be deprioritized and FFS whether they have significant performance gains over OMA or MU-MIMO with the same transceiver complexity.
Proposal 3: The asynchronous NOMA transmission scheme in normal cell coverage, such as two-step RACH, should be studied and evaluated, wherein MSG1 carries MA signature and small data, and UE does not need to perform timing advance prior to MSG1 transmission.
Proposal 4:   Intra-cell and inter-cell interference in NOMA transmission can be mitigated by UE grouping, power control, symbol-level scrambling, and the hopping of MA signatures. Specifically:
· NOMA UEs within the same cell can be partitioned into multiple groups. Same or different short spreading codes achieving WBE can be applied to each group. Group-specific scrambling and power domain multiplexing can be applied to each UE group, wherein the configuration of scrambling codes can be made as a function of cell ID and UE group ID.

· To average the intra-cell and inter-cell interference, the use of short spreading codes and long scrambling codes can be hopping in time domain.

[bookmark: _Ref510804409]2.2. Observations on LLS Results 
Since RAN1-94b, more LLS evaluations have been done for NOMA TX schemes. Based on the LLS results collected in [9], we have the following observations:
Observation 2:  The LLS evaluations conducted in Rel-16 NR NOMA SI indicate that contention-based asynchronous NOMA can be supported by joint use of linear hybrid spreading at transmitter and LMMSE IC at receiver.  
Observation 3:  The link level performance of NOMA TX schemes based on UE-specific symbol level linear spreading with NR legacy modulation but without UE-specific sparse RE mapping have been cross evaluated and verified by multiple companies. The link level performance claimed by UE -specific symbol-level spreading with modified modulation and UE-specific sparse RE mapping cannot be verified by multiple companies for both synchronous and asynchronous transmissions.

Observation 4: The best trade off in performance, complexity and specification impacts can be achieved by the following designs in TX side processing:
· UE -specific bit-level scrambling 
· UE -specific symbol-level linear spreading with NR legacy modulation 
· symbol-level scrambling
· multi-branch transmission and UE/branch specific power assignment

Observation 5: The introduction of the following designs is unnecessary for NR NOMA, because they incur higher implementation complexity and larger specification impacts, without gain in performance:
· UE -specific symbol-level spreading with modified modulation
· UE -specific symbol-level interleaving, with symbol-level zero padding
· [bookmark: _Hlk528959136]UE-specific sparse RE mapping


3 [bookmark: _Ref510804403]LLS Results of ML-RSMA
3.1 PAPR Performance
In NR NOMA UL, the PAPR and link budget (MCL) of the candidate transmission schemes should be evaluated, since they determine the performance of cell edge and/or power-limited UEs. Therefore, DFT-s-OFDM waveform should be adopted as a baseline for mMTC use case. In [6], we proposed a multi-layer linear hybrid resource spreading and scrambling scheme (ML-RSMA) for NOMA UL transmission. 
As shown by Figures 1(a)-(d), the use of symbol-level scrambling can improve the PAPR performance for both CP-OFDM and DFT-s-OFDM waveform. The design details of scrambling sequence can be found in our companion paper submitted to RAN1-94bis [5].
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[bookmark: _Hlk506449750]Figure 1(a):  PAPR Reduction by Symbol-Level Scrambling (6 PRB)
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Figure 1(b): PAPR Reduction by Symbol-Level Scrambling (12 PRB)
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Figure 1(c):  PAPR Performance Improvement by Symbol-Level Scrambling (Single Layer, 16QAM, 6 PRB)

[image: ]
Figure 1(d): PAPR Performance Improvement by Symbol-Level Scrambling (Two Layer, QPSK, 6 PRB)

On the other hand, we noted that the use of sparsity patterns in SCMA leads to worse PAPR/ACLR performance than solutions based on linear hybrid spreading/scrambling/interleaving. Besides, the “sparsity” in transmission can lead to inefficient resource utilization, especially under the constraints of peak power limit. Moreover, compared with SCMA design with modified modulation [9], solutions based on linear hybrid spreading and scrambling exhibit similar or better error performance, less impacts on 3GPP specifications, and significantly better performance in system capacity, scalability, complexity/latency and PAPR. 
Therefore, we have the following proposals:
Proposal 5: The design of linear spreading scheme for NOMA should consider the inclusion of symbol-wise scrambling to improve the PAPR performance. The PAPR performance of QPSK can be used as a baseline.
Proposal 6: The capability/flexibility to support DFT-s-OFDM waveform should be considered as a key performance metric. In evaluating the PAPR and link budget performances of mMTC use case, DFT-s-OFDM waveform should be considered as a baseline.

3.2 On Multi-Dimensional Bits-to-Symbol Mapping
We show in the following that the shaping gain claimed by multi-dimensional bits to symbol mapping, or modified modulation, is an artifact of inappropriate selection of spreading factor and MCS. 
To illustrate, Figures 2(a)-(b) show the error performance of four different configurations of MCS and spreading factor in AWGN and fading channels, which include the two examples selected by [9] for 16-point constellations, with and without modified modulation mapping. We can observe from these results that the same spectral and energy efficiencies of multi-dimensional modulation mapping can be achieved by legacy modulations when the MCS and spreading factor are appropriately chosen, which avoids the implementation complexity of modified modulations as well as the vulnerability to channel estimation errors. 
[image: ]
Figure 2(a): BLER vs SNR for Legacy and Modified Modulation Mapping in AWGN Channel
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Figure 2(b): BLER vs SNR for Legacy and Modified Modulation Mapping in Fading Channel
Observation 6: In NOMA transmit signal processing, multi-dimensional modulation mapping does not bring any performance gain compared to legacy modulations.

3.3 Link Level Performance
As shown in Table 1, ML-RSMA is capable of supporting both grant-based and grant-free transmissions through flexible configuration of spreading codes and scrambling codes. 
ML-RSMA link level performance is evaluated for various parameters including different number of UEs, TB sizes, channels and use cases. ESE/LMMSE with soft IC receiver is considered as a baseline receiver for ML-RSMA transmissions depending on TB size. However, the receiver type for ML-RSMA is not limited to ESE/LMMSE with soft IC. Other receivers with various combinations of MUD and IC algorithms can also be adopted for ML-RSMA. 
3.3.1 eMBB Use Case
Figure 2 and Figure 3 show the average BLER for eMBB use case assuming ideal channel estimation (CHEST). Correspondingly, the two subplots in Figure 4 show the sum throughput vs sum SNR associated with Figure 2 and Figure 3, respectively. On the other hand, Figure 5 and Figure 6 present the average BLER with realistic CHEST. 
Based on Figures 4-8, we have the following observations:
Observation 7: ML-RSMA is a scalable, flexible and robust NOMA transmission scheme for eMBB.  By using realistic CHEST, it is able to support different SE and overloading ratios in fading channels with different delay spreads.


[bookmark: _Ref513825408][bookmark: _Hlk513821997]Figure 2:  ML-RSMA BLER performance for eMBB with with Ideal CHEST (TDL-C 300ns)


[bookmark: _Ref513825410]Figure 3: ML-RSMA BLER Performance for eMBB with Ideal CHEST (TDL-A 30ns)


[bookmark: _Ref525920755]Figure 4: ML-RSMA Sum Throughput vs Sum SNR for eMBB with Ideal CHEST


[bookmark: _Ref525921024]Figure 5: ML-RSMA BLER Performance for eMBB with Realistic CHEST (TDK-C 300ns)


[bookmark: _Ref525921026]Figure 6: ML-RSMA BLER Performance for eMBB with Realistic CHEST (TDL-A 30ns)

3.3.2 mMTC Use Case
Figure 7 shows average BLER of ML-RSMA for mMTC in TDL-C channel. In addition, Figure 8 shows the corresponding sum throughput vs sum SNR, assuming the same channel fading as in Figure 9.
On the other hand, Figure 9 shows the BLER performance for mMTC use case with realistic channel estimation. Similar to the eMBB case, ML-RSMA is shown as a robust transmission scheme for mMTC in the presence of channel estimation errors.



[bookmark: _Ref513826253]Figure 7: ML-RSMA BLER Performance for mMTC with Ideal CHEST (TDL-C 300ns) 
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[bookmark: _Ref513826301]Figure 8: ML-RSMA Sum Throughput vs Sum SNR for mMTC with Ideal CHEST (TDL-C 300ns)


[bookmark: _Ref525922353]Figure 9: ML-RSMA BLER Performance for mMTC with TDL-A 30ns and Realistic CHEST

Different types of receivers including low-complexity ones can be applied to ML-RSMA. Figure 10 and Figure 11 show the performance comparison between hybrid-IC and hard-IC. Both realistic and ideal chest are considered.
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[bookmark: _Ref528946266][bookmark: _Ref528946254]Figure 10. ML-RSMA BLER Performance with Hybrid-IC and Hard-IC for Ideal Chest
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[bookmark: _Ref528946685]Figure 11. ML-RSMA BLER Performance with Hybrid-IC and Hard-IC for Ideal Chest
Figure 12 and Figure 13 show ML-RSMA BLER performance with unequal power distribution and timing offsets. For timing offset, both 0.5 CP and 1.5 CP timing offset intervals are considered. 
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[bookmark: _Ref528947001]Figure 12. ML-RSMA BLER Performance with Timing offset and Power offset for Ideal Chest
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[bookmark: _Ref528947003]Figure 13. ML-RSMA BLER Performance with Timing offset and Power offset for Realistic Chest

In grant-free transmission, each UE randomly selects its MA signature from a signature pool. In linear hybrid ML-RSMA schemes, MA signatures at least consist of short spreading and long scrambling sequences. With combination of short spreading/long scrambling sequences, large MA sequence pool can be generated for ML-RSMA and MA signature collision can be avoided with high probability.
Figure 14 shows ML-RSMA BLER performance for grant-free NOMA transmission with DFT-s-OFDM and CP-OFDM waveforms. 
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[bookmark: _Ref528947599]Figure 14. ML-RSMA BELR Performance with Random MA Signature Allocation with Collision

Observation 8: ML-RSMA can support both synchronous and asynchronous transmission (even with timing offsets larger than CP). By hybrid linear spreading/scrambling, ML-RSMA can also support contention-based grant-free transmission.

[bookmark: _Ref525923024]Figure 15. ML-RSMA BLER performance for mMTC with inter-cell interfering UE

Figure 15 shows BLER performance of ML-RSMA with 4 interfering UEs in an adjacent cell. The 4 interferers reuse the MCP codebook of the 16 NOMA UEs in the serving cell. Compared to NOMA schemes with linear spreading only, the hybrid ML-RSMA scheme with cell-specific symbol level scrambling has demonstrated significant performance gains in mitigating inter-cell interference.
[bookmark: _Hlk525937359]Observation 9:  By the use of cell-specific symbol level scrambling, ML-RSMA is able to mitigate inter-cell interference effectively. 

4 System-level Simulation Results 
In this section, we present system-level simulation results to compare the performance of OMA baseline and NOMA for the eMBB dynamic grant and grant-free scenarios. The simulation setup is in accordance with the agreed simulation assumptions. 
A layout with 32 UEs per cell is considered. All simulations assume a TDD configuration pattern that consists of 3 downlink slots and 1 uplink slot. 
4.1 eMBB Dynamic-Grant Scenario
For the dynamic grant based eMBB scenario, we assume that the gNB has 4 receive antennas. The simulation bandwidth of 12 PRBs is divided into 4 resource block groups (RBGs) with 3 PRBs each. Both the baseline scheme and the RSMA scheme employ proportional fair scheduling based on frequency-domain multiplexing jointly with MU-MIMO. In addition, the RSMA scheme employs symbol-level spreading using RSMA sequences with a spreading factor of 2. A pool of 4 sequences is used. The smallest granularity of resource allocation is assumed to be 1 RBG. 
The number of UEs that can be assigned to the same resource is limited to 4 in the baseline scenario to match the number of receive antennas. For the RSMA scheme, the number of UEs on the same resource is allowed to go up to 16. Open-loop power control is assumed with P0 set to 14 dB over thermal, and α = 0.9.
The impact of PDCCH capacity constraint on the PUSCH performance is modelled as follows. The system bandwidth is assumed to be 80 MHz, which corresponds to 216 PRBs (assuming 2.8% guard band). The grants for each uplink data transmission are assumed to be sent using 2 symbols of PDCCH in the prior downlink slot. Two options are considered for the PDCCH bandwidth used for sending the uplink grants: 20 MHz and 80 MHz. These options correspond to 18 CCEs and 72 CCEs of control channel capacity respectively.
Figure 16 shows the median user-perceived throughput versus packet arrival rate for the baseline and RSMA schemes in the eMBB dynamic-grant scenario. The results are presented for both options of control channel capacity. From the result, it can be seen that RSMA provides an improvement in the user-perceived throughput as compared to the baseline scheme. In addition, it can be seen that both schemes experience a performance degradation at high arrival rates if the PDCCH capacity is reduced from 72 CCEs to 18 CCEs. Figure 17 shows the packet drop rate for different packet arrival rates. It can be seen that RSMA can sustain a higher packet arrival rate before reaching the target packet drop rate of 1%. 
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[bookmark: _Ref529620112]Figure 16: eMBB Grant-Based - UPT vs. PAR for different PDCCH capacity limits.


[bookmark: _Ref529621036]Figure 17: eMBB Grant-Based - PDR vs. PAR
4.2 eMBB Grant-Free Scenario
The details regarding the configured grant allocation are discussed below.
[bookmark: _Hlk529610684]In the baseline (OMA) case, the simulation bandwidth of 12 PRBs is divided into 4 resource block groups (RBGs) with 3 PRBs each. Each of the 32 UEs is assigned to one of the 4 RBGs once in every 2 uplink slots, which corresponds to a periodicity of 8 slots due to the TDD configuration assumed. This results in 4 UEs being assigned to each RBG. This overloading is equal to the number of receive antennas at the gNB (which is assumed to be 4). Therefore, the users could potentially be separated in the spatial domain.
In the NOMA case, each UE is assigned all 12 PRBs. The periodicity is the same as the baseline setup – once in every 2 uplink slots, which results in a periodicity of 8 slots. A total of 16 UEs are assigned to the same resource. The UEs are pre-configured with one of 16 RSMA sequences with a spreading factor 4.
In each simulation, MCS is assumed to be fixed over time and is also the same for all UEs. Results are presented for 5 different choices of this MCS, which correspond to TB sizes of 40, 65, 89, 114 and 139 bytes (assuming 10 OFDM symbols for PUSCH in the uplink slot). Open-loop power control is assumed with P0 set to 14 dB over thermal, and α = 0.9.
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Based on the above results, Figure 18 shows the 5th, 50th and 95th percentile of the user perceived throughput where both for baseline and RSMA, the TB size is optimized for each PAR to maximize the median UPT while ensuring that the packet drop rate is within the 1% limit. 
[image: ]
[bookmark: _Ref528951315][bookmark: _Ref528951311]Figure 18: UPT vs. PAR for eMBB uplink grant-free OMA and RSMA (TBS optimized for each PAR)

For the case where the TB size is not optimized for each PAR, but is instead fixed to a specific value of 89 bytes, Figure 19 shows the 5th, 50th and 95th percentiles of the user-perceived throughput as a function of packet arrival rate for the baseline case as compared to RSMA. 
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[bookmark: _Ref529561862]Figure 19: UPT vs. PAR for eMBB uplink grant-free OMA and RSMA (TBS = 89 bytes)
Figure 20 shows the packet drop rate as a function of the packet arrival rate for the same scenario.
[image: ]
[bookmark: _Ref529561878]Figure 20: PDR vs. PAR for uplink grant-free OMA and RSMA (TBS = 89 bytes)

Further details and results can be found in the attached spreadsheet. Based on the above results, the following observations can be made. 
Observation 10: System-level simulations indicate that RSMA provides gains in user-perceived throughput relative to an orthogonal MU-MIMO baseline scheme in both the dynamic grant-based and grant-free uplink eMBB scenarios. 

Observation 11: As compared to the grant-based scenario, the gains are higher in the grant-free scenario if the TB size for the configured grant is selected carefully based on the load level.

[bookmark: _Hlk529745940]Observation 12: In grant-based scenarios, the PDCCH capacity limitation can significantly limit the performance of uplink eMBB for both baseline and NOMA at high arrival rates. Gain from NOMA can become limited if PDCCH capacity becomes the bottleneck.

5  LLS and SLS for SCMA/EPA
Cross-evaluations for SCMA/EPA [10-11] have been conducted for a fraction of the test cases agreed in [2-4]. Even with collision-free transmission, ideal channel estimation and better receiver configurations (e.g. by considering LDPC BP decoder with 50 decoding iterations and/or 30 inner iterations), the cross-evaluation results for SCMA/EPA are always worse than claimed in [10-11]. Some examples are shown in Figures 21(a)-(e).
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Figure 21(a): Cross Evaluation Results of SCMA/EPA for Case 4
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Figure 21(b): Cross Evaluation Results of SCMA/EPA for Case 5
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Figure 21(c): Cross Evaluation Results of SCMA/EPA for Case 17
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Figure 21(d): Cross Evaluation Results of SCMA/EPA for Case 26
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Figure 21(e): Cross Evaluation Results of SCMA/EPA for Case 27

Therefore, we have the following observations:
Observation 13:  Even with collision-free transmission, ideal channel estimation, and better receiver configurations (e.g. by considering LDPC BP decoder with 50 decoding iterations and/or 30 inner iterations), the cross-evaluation results for SCMA/EPA are always worse than those claimed by R1-1810116 and R1-1810117.

Observation 14:  Compared to linear hybrid spreading based on WBE sequences without zero elements, there is no performance gain for SCMA, when LMMSE IC receiver is used.

On the other hand, it is worth noting that in the PHY abstraction method proposed for SCMA [12], it assumed an MPA receiver. The SCMA/MPA formulation borrowed the “perfect inference cancellation bound” and “curve fitting” approach developed in [13]. However, the derivation and analysis in [13] are valid for synchronized transmission and flat fading. Therefore, the direct extension of [13] to SCMA/EPA L2S mapping is questionable, especially for LLS results for asynchronized transmission and un-equal SNR. Therefore, we have the following observation:
Observation 15:  In L2S mapping for SCMA/EPA, it is questionable to follow the PHY abstraction method developed for maximum likelihood receiver, synchronized transmission and equal SNR distribution (e.g. [13]).
Based on the observations above, we have the following proposal:
Proposal 7:  FFS PHY abstraction method of SCMA/EPA for asynchronous transmission and unequal SNR distribution.
Proposal 8: Based on the LLS and SLS results, the following TX schemes should be considered for NOMA synchronous and asynchronous transmissions:
· UE -specific bit-level scrambling compliant with NR Rel-15
· UE -specific symbol-level linear spreading with NR legacy modulation
· WBE spreading sequences without zero elements
· symbol-level scrambling
· multi-branch transmission and UE/branch specific power assignment


6 Conclusions
In this contribution, we considered link level performance evaluation of NOMA schemes. We have the following observations and conclusions:
Observation 1 
· When the network operates in grant-based mode, transmission schemes proposed for NOMA can be applied to MU-MIMO as well. The gain of NOMA over MU-MIMO in spectral efficiency is questionable, especially for underloading scenarios.
· When the network operates in grant-free mode and the UL access is contention-free, the gain of NOMA over MU-MIMO in spectral efficiency is questionable.
· The most significant gain of NOMA over MU-MIMO can be achieved in the following scenarios:
· contention-based, grant-free transmission
· small data transmission from RRC_INACTIVE state

Observation 2:  The LLS evaluations conducted in Rel-16 NR NOMA SI indicate that contention-based asynchronous NOMA can be supported by joint use of linear hybrid spreading at transmitter and LMMSE IC at receiver.  
Observation 3:  The link level performance of NOMA TX schemes based on UE-specific symbol level linear spreading with NR legacy modulation but without UE-specific sparse RE mapping have been cross evaluated and verified by multiple companies. The link level performance claimed by UE -specific symbol-level spreading with modified modulation and UE-specific sparse RE mapping cannot be verified by multiple companies for both synchronous and asynchronous transmissions.

Observation 4: The best trade off in performance, complexity and specification impacts can be achieved by the following designs in TX side processing:
· UE -specific bit-level scrambling 
· UE -specific symbol-level linear spreading with NR legacy modulation 
· symbol-level scrambling
· multi-branch transmission and UE/branch specific power assignment

Observation 5: The introduction of the following designs is unnecessary for NR NOMA, because they incur higher implementation complexity and larger specification impacts, without gain in performance:
· UE -specific symbol-level spreading with modified modulation
· UE -specific symbol-level interleaving, with symbol-level zero padding
· UE-specific sparse RE mapping

Observation 6: In NOMA transmit signal processing, multi-dimensional modulation mapping does not bring any performance gain compared to legacy modulations.
Observation 7: ML-RSMA is a scalable, flexible and robust transmission scheme for NOMA. It is capable of supporting different SE and overloading ratios in both grant-based and grant-free transmissions, by using realistic CHEST.
Observation 8: ML-RSMA can support both synchronous and asynchronous transmission (even with timing offsets larger than CP). By hybrid linear spreading/scrambling, ML-RSMA can also support contention-based grant-free transmission.
Observation 9:  By the use of cell-specific symbol level scrambling, ML-RSMA is able to mitigate inter-cell interference effectively. 
Observation 10: System-level simulations indicate that RSMA provides gains in user-perceived throughput relative to an orthogonal MU-MIMO baseline scheme in both the dynamic grant-based and grant-free uplink eMBB scenarios. 

Observation 11: As compared to the grant-based scenario, the gains are higher in the grant-free scenario if the TB size for the configured grant is selected carefully based on the load level.

Observation 12: In grant-based scenarios, the PDCCH capacity limitation can significantly limit the performance of uplink eMBB for both baseline and NOMA at high arrival rates. Gain from NOMA can become limited if PDCCH capacity becomes the bottleneck.

Observation 13:  Even with collision-free transmission, ideal channel estimation and better receiver configurations (e.g. by considering LDPC BP decoder with 50 decoding iterations and/or 30 inner iterations), the cross-evaluation results for SCMA/EPA are always worse than those claimed by R1-1810116 and R1-1810117.

Observation 14:  Compared to linear hybrid spreading based on WBE sequences without zero elements, there is no performance gain for SCMA, when LMMSE IC receiver is used.
[bookmark: _GoBack]
Observation 15:  In L2S mapping for SCMA/EPA, it is questionable to follow the PHY abstraction method developed for maximum likelihood receiver, synchronized transmission and equal SNR distribution (e.g. [13]).

Proposal 1: NR NOMA solutions achieving performance gains over NR Rel-15 MU-MIMO should be prioritized in the study and evaluation.

Proposal 2: For synchronized NOMA transmission, TX solutions incapable of UE overloading and/or unsuitable for scalable configuration should be deprioritized and FFS whether they have significant performance gains over OMA or MU-MIMO with the same transceiver complexity.
Proposal 3: The asynchronized NOMA transmission scheme in normal cell coverage, such as two-step RACH, should be studied and evaluated, wherein MSG1 carries MA signature and small data, and UE does not need to perform timing advance prior to MSG1 transmission.
Proposal 4:   Intra-cell and inter-cell interference in NOMA transmission can be mitigated by UE grouping, power control, symbol-level scrambling, and the hopping of MA signatures. Specifically:
· NOMA UEs within the same cell can be partitioned into multiple groups. Same or different short spreading codes achieving WBE can be applied to each group. Group-specific scrambling and power domain multiplexing can be applied to each UE group, wherein the configuration of scrambling codes can be made as a function of cell ID and UE group ID.

· To average the intra-cell and inter-cell interference, the use of short spreading codes and long scrambling codes can be hopping in time domain.


Proposal 5: The design of linear spreading scheme for NOMA should consider the inclusion of symbol-wise scrambling to improve the PAPR performance. The PAPR performance of QPSK can be used as a baseline.
Proposal 6: The capability/flexibility to support DFT-s-OFDM waveform should be considered as a key performance metric. In evaluating the PAPR and link budget performances of mMTC use case, DFT-s-OFDM waveform should be considered as a baseline.
Proposal 7:  FFS PHY abstraction method of SCMA/EPA for asynchronous transmission and unequal SNR distribution.
Proposal 8: Based on the LLS and SLS results, the following TX schemes should be considered for NOMA synchronous and asynchronous transmissions:
· UE -specific bit-level scrambling compliant with NR Rel-15
· UE -specific symbol-level linear spreading with NR legacy modulation
· WBE spreading sequences without zero elements
· symbol-level scrambling
· multi-branch transmission and UE/branch specific power assignment
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Introduction


 


As a justification of the NR SI, the SID underscored the potential benefits of NOMA transmission in [1]:


 


·


 


The benefits of NOMA, particularly when enabling grant


-


free transmission, may encom


pass a variety 


of use cases or deployment scenarios, including eMBB, URLLC, mMTC.


 


·


 


In RRC_CONNECTED state, it saves the scheduling request procedure assuming UE is already uplink 


synchronized.


 


·


 


In RRC_INACTIVE state, data can be transmitted even without RACH


 


procedure or with 2


-


step RACH.


 


·


 


The saving of the 


signa


ling naturally also saves UE’s power consumption, reduces latency and 


increases system capacity.


 


Accordi


ng to the agreements in [2


-


6


], the following metrics will be adopted for link level evaluation:


 


·


 


Performance Metrics


 


a.


 


BLER vs. per UE SNR for


 


given combination of per UE spectral efficiency (SE) and total 


number of UEs


 


b.


 


Sum throughput vs total


 


SNR at given BLER


, for given combination of per UE SE and total 


number of UEs


 


c.


 


Maximal coupling loss (MCL)


 


 


·


 


Impl


ementation Metrics


 


a.


 


PAPR or cubic metric


 


b.


 


Receiver complexity and processing latency


 


After RAN1


-


94b, companies have conducted LLS evaluations for both synchronous and asynchronous NOMA 


transmissions for different deployment scenarios [7]. Besides, 


different 


PHY abstraction


 


methods have been 


proposed for different 


NOMA 


receivers


 


[8]


.


 


 


In this contribution


, 


we 


pre


sent 


the S


LS 


and L


LS 


results of


 


ML


-


RSMA


. 


The PHY abstraction method proposed 


for LMMSE Hard


-


IC (Section 2.1.1, [8]) 


have been used in our SLS, which 


indicate that 


ML


-


RSMA provides 


gains in user


-


perceived throughput as compared to an orthogo


nal MU


-


MIMO baseline in


 


grant


-


free 


and grant


-


based 


transmissions. 


 


In addition,


 


t


he 


link level performance for 


ML


-


RSMA 


have been evaluated


 


for realistic 


channel estimation, 


i


nter


-


ce


ll interference


 


and asynchronous transmissions


 


[9]


.


 


Both SLS and LLS results have 


demonstrated 


ML


-


RSMA is a scalable, flexible and robust transmission scheme for NOMA. It is capable of 
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