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1. [bookmark: OLE_LINK13][bookmark: OLE_LINK14]Introduction 
Considering transceiver complexity and forward compatibility, legacy Uplink Multi-Users MIMO (MU-MIMO for short) can be seen as one special NOMA scheme without introducing any special designed MA signatures. In this contribution, we provide the evaluation results of legacy MU-MIMO with low complexity MMSE-IRC or enhanced MMSE-SIC receiver.
Furthermore, UE identification in NOMA should be a common issue for both cases with and without DMRS collision. In this contribution, we analyse the evaluation methodology for UE identification, including the process of UE identification and calculation of threshold for false alarm. 
2. [bookmark: OLE_LINK6]Performance evaluations of MU-MIMO
For enhancing anti-interference ability in uplink MU, the basic principle is reducing cross-correlation of wireless channel between users as soon as possible, in other words increasing processing degrees of freedom. Most NOMA schemes acquire this effect by introducing symbol-level spreading and scrambling especially when the numbers of MU is much larger than antennas in receiver.
MU-MIMO based on Rel-15 only depends on the freedom of antenna number in gNB. When the number of MU exceeds the antenna number, i.e. overloading, the only freedom introduced by multi-antennas is not sufficient for data decoding. In such case, the power difference of wireless channel between different users can be used to facilitate the detection with MMSE-IC receiver. However, due to power control mechanism, power difference among multiple UEs maybe not significant thus not helpful to enable MMSE-IC detection. 
In order to increase freedom to withstand interference, we introduce BPSK for CP-OFDM waveform [1]. BPSK can exploit the additional degree of freedom from the real and imaginary part of the received signal to enhance suppression of interference.
In this simulation, we adopt traditional MMSE-Hard-SIC receiver and amend for enhancement by selecting two strongest SINR users to attempt to decode per iteration, instead of selecting only the strongest. The full block diagram of reception as follows.


Figure 1.  MMSE-hard-SIC receiver
In the simulations, we assume ideal channel estimation and ideal miss detection based on DMRS, and different modulation orders are assumed for MU-MIMO, where “MU-QPSK” denotes QPSK is adopted for MU-MIMO and “MU-BPSK” denotes BPSK is adopted for MU-MIMO.
For comparison, we also show the curves of MUSA with MMSE-hard-SIC from ZTE, wherein MUSA is optimized spreading factor from {2,3,4,6}. More details can be found in the template together with this contribution.
2.1. [bookmark: OLE_LINK25]mMTC scenario
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Figure 2.  Case1
[image: ][image: ]
Figure 3.  Case2
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                                           Figure 4.  Case3
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Figure 5.  Case4
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Figure 6.  Case5
2.2. eMBB scenario
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Figure 7.  Case18
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Figure 8.  Case19
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 Figure 9.  Case20

Observation1:  In most of simulated cases, performance of MU-MIMO is comparable with MUSA, while MUSA shows advantage in the cases with large TB size and large number of users. 
3. Analysis of false alarm and miss detection based on DMRS
The gNB needs to check how many users are activated based on the DMRS resource, no matter implementing random selection or random activity. The activity state is usually determined by detecting whether the ratio of peak power of signal to mean power of noise exceeds a certain threshold that is similar to preamble detection in PRACH. To get the threshold, there are two concepts: False alarm probability and chi-square distribution.
· False alarm probability: 
False alarm probability is basic for performance measurement for DMRS resource, i.e. the probability of detecting a DMRS port when none was sent.
· Chi-square distribution: 


Assuming N statistical independent Gaussian random variables and they are normal distributions with mean value of 0 and variance of 1. The sum of power  obeys Chi-square distribution with N degrees of freedom.



Figure 3.  Signal detection based on DMRS resources

The ratio of path power to mean noise power in signal window





is antenna number in receiver, is length of “dmrs-AdditionalPosition” ,is mean power of noise.


, and  is the path number in signal window.


Then obeys Chi-square distribution with degrees of freedom, since both the real and imaginary parts of noise obey Gaussian distribution.
The false alarm probability per DMRS port:



For all DMRS resources pool size, the false alarm probability of system:



Supposing allocated PRB number 12 for SCS=15 KHz, an empirical value for 

Supposing expected.

Table3: the theoretical value of  for PRB12 with SCS15 KHz
	Antenna number

	Length of “dmrs-AdditionalPosition”


	DMRS Pool size



	
	
	12
	24

	2
	1
	7.8 dB
	8.06 dB

	
	2
	6.09 dB
	6.3 dB

	4
	1
	6.09 dB
	6.3 dB

	
	2
	4.65 dB
	4.83 dB



[bookmark: _GoBack]The correct detection probability (Pc) is the probability of one DMRS port that is correctly detected and the detected timing error is within the CP. The miss-detection probability is 1-Pc. Two cases, i.e. mMTC scenario with 1T2R and eMBB scenario with 1T4R are assumed to evaluate the miss detection probability. The simulation results are shown as follows in Figure 10. Detail assumptions refer to the Appendix.
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Figure 10.  miss-detection probability based on DMRS
[bookmark: OLE_LINK15][bookmark: OLE_LINK17]The targets of false alarm and miss detection probability are assumed to be 1%.  From the figure, it can be seen that the minimum SNR of meeting the miss-detection target is -3dB in the mMTC case. Comparing with the BLER-SNR performance shown in section 2.1, we can observe that miss-detection has impacts on the performance of some mMTC cases. Therefore, for NOMA evaluation with realistic channel estimation, the effects of false alarm and miss detection should be taken into account. 
On the other hand, there are some possible methods to reduce the miss-detection probability, e.g. increase number of receiver antenna, increase the sequence length of RS, or introducing repetition. 
[bookmark: OLE_LINK18]Proposal 1: For NOMA evaluation with realistic channel estimation, the effects of false alarm and miss detection should be taken into account.
4. [bookmark: OLE_LINK16]Conclusion
In this contribution, we emulated legacy MU-MIMO scheme, give the following observation and proposal.
Observation1:  In most of simulated cases, performance of MU-MIMO is comparable with MUSA, while MUSA shows advantage in the cases with large TB size and large number of users. 
Proposal 1: For NOMA evaluation with realistic channel estimation, the effects of false alarm and miss detection should be taken into account.
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Appendix
Table2:  summarizes LLS assumptions and parameters
	Parameters
	eMBB
	mMTC

	Carrier Frequency 
and Numerology
	4 GHz with SCS = 15 kHz, #OS = 14
	700MHz with SCS = 15 kHz, #OS = 14

	Allocated bandwidth
	12PRBs
	6PRBs

	BS antenna configuration
	4Rx for 4 GHz
	2Rx for 4 GHz

	Propagation channel & UE velocity
	TDL-A 30ns, 3km/h, with iid
	TDL-C 300ns, 3km/h, with iid

	DMRS 
	Type II, double-symbol, dmrs-AdditionalPosition=1,
 DMRS port pool =12

	Timing offset
	0
	0

	Frequency error
	0
	0

	Other cell interference
	Not considered
	Not considered
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