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Background
It was agreed in RAN1#94 to use the following table for computation complexity analysis of the receiver as the starting point [1]:
	Receiver component
	Detailed component
	Computation in parametric number of usages, O(.) analysis, [impact factor]

	
	
	Receiver type 1
	Receiver type 2
	…

	Detector

	UE detection 
	
	
	

	
	Channel estimation
	
	
	

	
	
	
	
	

	
	Rx combining, if any
	
	
	

	
	Covariance matrix calculation, if any
	
	
	

	
	Demodulation weight computation, if any
	
	
	

	
	UE ordering, if any
	
	
	

	
	Demodulation, if any
	
	
	

	
	Soft information generation, if any
	
	
	

	
	Soft symbol reconstruction, if any
	
	
	

	
	Message passing, if any
	
	
	

	
	Others
	
	
	

	Decoder
	LDPC decoding
	
	
	

	Interference cancellation
	Symbol reconstruction(Including FFT operations for DFT-S-OFDM waveform), if any
	
	
	

	
	LLR to probability conversion, if any
	
	
	

	
	Interference cancellation
	
	
	

	
	LDPC encoding, if any
	
	
	

	
	Others
	
	
	


· The impact factor is to be estimated based on the analysis of computation, memory size, hardware and software implementation, etc. 
· If/How and which entries are to be combined/compared in order to get the total complexity estimate is FFS. 
· Companies may provide the impact factor
· The impact factor is for each cell 
· The rows in the above table are subject to potential refinement, e.g., adding new row(s), merge some rows, etc.
· Note: the numbers may or may not be a function of UL waveform
· FFS whether or not to add row(s) for memory blocks

It was also agreed in RAN1#93 that at high level, the multi-user receiver for NOMA can be represented as the following block diagram.
[image: ]
In this contribution, we provide analysis of each breakup.
Interactions between detector/IC and decoder 
In this section, interactions between detector/IC and channel decoder are illustrated, for the purpose of estimating the number of usages of major components of each receiver type. The number of usages is per user’s transport block. It is generally not very sensitive to the number of users or the size of transport block, although for different loading and spectral efficiency, the exact number of usages may vary to some extent. 
MMSE-IRC/hard IC based
Figure 1 is the high level block diagram of MMSE-IRC detector. It is seen that in order to decode a user’s data packet, MMSE detection and channel decoding are only needed once. Intra and inter-cell interference here are suppressed via MMSE, e.g., no interference cancellation is performed.  Hence, the numbers of usages of major components in MMSE-IRC receiver can be easily computed as seen in Table 1.
[image: MMSE-IRC receiver.tif]
[bookmark: _Ref2664]Figure 1 A high-level block diagram of MMSE-IRC based receiver
Table 1 Numbers of usages of major components in MMSE-IRC receiver
	Receiver component
	Number of usages

	MMSE detector
	1

	Hard-output decoder
	1

	Interference cancellation
	0



MMSE-hard IC receiver is an improvement over MMSE-IRC by adding interference cancellation. “Hard” here is to emphasize that the interference cancellation is based on the hard output of the decoder, as opposed to other types of NOMA receivers. Figure 2 shows a high level block diagram of MMSE-hard IC where the additional blocks compared to MMSE-IRC are highlighted in green. Different from the “text-book” version of MMSE-SIC where the successive cancellation would terminate if any one of the users fails the decoding, the MMSE-hard IC in Figure 2 is an enhanced version where the cancellation process would not be terminated simply because one of users fails the decoding. That user would remain in the chain and have another chance for decoding, after the next users are decoded. Certainly this would improve the performance, albeit with some extra detection and decoding needed. The average numbers of usages of major components in MMSE-hard IC receiver are shown in Table 2. Note that the value of “beta” here is between 1 and 2, for normal loading and spectral efficiency. Typically,  is around 1.3.

[image: MMSE-SIC receiver.tif]

Figure 2 A high-level block diagram of enhanced MMSE-hard IC based receiver
Table 2 Numbers of usages of major components in enhanced MMSE-hard IC receiver
	Receiver component
	Avg. number of usages

	MMSE detector
	


	Hard-output decoder
	


	Hard interference cancellation
	



Note:  only applies to some of the detailed components in MMSE detector of hard IC receiver.
ESE + SISO based
High level block diagram of ESE + SISO detector is shown in Fig. 3. Iterative detection and decoding are employed, which means that multiple times of detection and channel decoding, denoted as Nouter, are needed in order to decode a user’s data packet. Also note that in typical ESE + SISO receivers, for each outer iteration, only one inner iteration is needed in the ESE detector. The number of usages of major components in ESE + SISO receiver is the number of outer iterations, shown in Table 3

[image: IMG_256]
Figure 3 A high-level block diagram of ESE + SISO based receiver

Table 3 Numbers of usages of major components in ESE + SISO receiver
	Receiver component
	Avg. number of usages

	ESE detector + soft interference cancellation
	Nouter

	Soft-output decoder
	Nouter



EPA + SISO based
High level block diagram of EPA + SISO detector is shown in Fig. 4. Similar to ESE + SISO, iterative detection and decoding are employed. Due to unique feature of EPA which can be represented by a bi-partite structure and normally relies on message passing between the factor nodes/resource elements (FN/RE) and the variable nodes (VN)/users, multiple iterations inside the EPA detector, denoted as Ninner_det, are needed for each outer iteration between the EPA and the channel decoder. The numbers of usages of major components is the number of outer iterations in Table 4.
[image: ]
Figure 4 A high-level block diagram of EPA + SISO based receiver
Table 4 Numbers of usages of major components in EPA + SISO receiver
	Receiver component
	Avg. number of usages

	EPA detector + soft interference cancellation
	 Ninner_detNouter

	Soft-output decoder
	Nouter




Component-wise computation complexity
Detector’s computation complexity is measured per user per data-occupied resource element. Channel decoder’s computation complexity is measured per coded bits per user. Note that the complexity analysis in this section for each detailed component is not to get exact numbers of multiplications, additions, etc. Instead, we use simple formula to represent the approximation, e.g., in form of O(.) which is a single-term equation with one or multiple input variables. The approximations take into account of typical values of the parameters.
MMSE detector
A linear MMSE detector normally includes the following key computations [2]:
· Covariance matrix calculation
The covariance matrix is with the dimension of min(K, Nrx *L) where K is the number of users, Nrx is the number of receive antennas, and L is the spreading factor. It can be calculated from the estimated spatial channel as follows,

                                                                               (1)
where H is the channel matrix for K number of UEs. In fully loaded case (when the receiver is most stressful), the number of UEs sharing the same time-frequency resource would be larger than the dimension provided by the spreading and the spatial discrimination by multiple receive antennas. Hence, when analyzing the receiver computation complexity in the worst case, the dimension of covariance matrix is limited by Nrx *L. Note that the covariance matrix is conjugate symmetric. The number of complex multiplication is roughly (Nrx *L)2/2 per user in order to calculate the covariance matrix. Also note for typical fading channel and user mobility, covariance matrix does not change much within one PRB (e.g., 1ms and 180 kHz). Hence, the complexity for the covariance matrix calculation per data-occupied resource element should be divided by the number of data REs in a PRB, denoted as NPRBdata-RE. It should be noted that if finer granularity is applied, for example, if the channel/covariance related variables would stay the same only across G number of adjacent REs, the complexity for detector part excluding UE detection and channel estimation needs to be scaled up by a factor  = NPRBdata-RE/G.
· MMSE weight calculation
MMSE demodulation weight is often calculated as follows,

                                                                                       (2)
The matrix inversion would take roughly (Nrx *L)3 complex multiplications. Note that matrix inversion needs to be calculated once for all users. The vector-matrix multiplication would take roughly (Nrx *L)2. complex multiplications per user. The above calculation is once per PRB. Hence, the computation complexity for MMSE weight calculation per user per data RE is roughly ((Nrx *L)3 /K + (Nrx *L)2)/ NPRBdata-RE.
· Demodulation
Demodulation is the process of multiplying of MMSE weight to the received signal. Demodulation processing includes de-spreading if spreading is applied at transmitter and MMSE receiver is used. Its computation complexity is roughly Nrx for each user per data RE. 
So the total computation complexity of MMSE detector per user per data resource element can be roughly estimated in Table 5. The approximation of MMSE weight calculation complexity assumes a typical setting where there are 12 users, the number of receive antennas is 2 and the spreading factor is 4. That is: K = 12, Nrx = 2, L = 4.
Table 5 Computation complexity break-down for MMSE detector
	Key computations
	Complexity roughly in #complex multi per user per data RE
	Approximation as single-term formulae

	Covariance matrix calculation
	(Nrx *L)2/2/ NPRBdata-RE
	O((Nrx *L)2/2/ NPRBdata-RE)

	MMSE weight calculation
	 ((Nrx *L)3 /K + (Nrx *L)2)/ NPRBdata-RE  
	O(2 *(Nrx *L)3 /K/ NPRBdata-RE  )

	Demodulation
	Nrx
	O(Nrx)


Let us plug in some numbers to get more feeling of which computation takes the major chunk of processing. In each PRB, there are 144 resource elements for data. Assuming K = 12, Nrx = 2, L = 4, and NPRBdata-RE  = 144,  = 6, the covariance matrix calculation would roughly take 1.3 complex multiplications per user per data RE. MMSE weight calculation would take about 3.6 complex multiplications, and demodulation would take about 2 complex multiplications.
Hard interference cancellation (hard-IC)
Hard interference cancellation contains the following main operations:
· User signal reconstruction
Reconstruction of each user’s signal involves channel re-encoding, modulation, multiplication with estimated channel, spreading (if applied), etc. Channel re-encoding is done in binary field and would require much less complexity compared to other modules, and thus can be omitted here. Modulation also requires very small amount of processing, which can also be omitted. For each user signal on each data resource element, the number of complex multiplications is roughly Nrx. 
· SINR sorting
SINR can be calculated by 

                                                                                 (3)
which requires (Nrx*L) complex multiplications. Note that SINR needs to be calculated per user for every PRB, per data RE. For MMSE-SIC receiver, whenever a UE is successfully decoded, Tk needs to be re-calculated. Considering this, the average computation complexity per user for SINR sorting is therefore approximately (Nrx*L)*K/2/NPRBdata-RE.. The sorting operation itself can be done very efficiently in the hardware and its complexity can be omitted here.
· Interference cancellation
Only complex subtraction is involved in the hard interference cancellation once users’ signals are reconstructed. Compared to complex multiplication, complex subtraction requires much less processing, thus can be omitted here. So the total computation complexity of hard IC per user per data RE can be roughly estimated in Table 6.
Table 6 Computation complexity break-down for hard-IC
	Key computations
	Complexity roughly in #complex multi per user per data RE
	Approximation as single-term formulae

	User signal reconstruction
	Nrx 
	O(Nrx)

	SINR sorting
	 (Nrx *L)*K/2/NPRBdata-RE  
	O(Nrx *L*K/2/NPRBdata-RE  )



ESE detector and soft IC
ESE performs both functions of detection and soft interference cancellation. ESE has two major variants: matched filter (MF) based and linear MMSE based. In the following we use MF-based ESE as an example to estimate its computation complexity.
· MF-based ESE detector and soft IC
Key steps in MF-based ESE detector can be represented as the following equations, assuming BPSK/QPSK modulation. The first equation (Eq. 4) converts the LLR or the soft output of the channel decoder into the estimated mean value of a user’s “soft” modulated symbol in a data resource element. It essentially performs the function of soft symbol reconstruction. For nonlinear functions like tanh(.), look-up-tables are usually implemented to ease the computation. Hence, we omit its computation here. Eqs. 5a - 5d are related to soft cancellation. More specifically, Eq. 5a) calculates the variance of this user’s “soft” modulated symbol, which requires one complex multiplication per user. Eq. 5b calculates the mean value of other users’ interference. For more efficient calculation, the sum of multiplication of the channel and soft signal for all users can be calculated first, which requires K*Nrx multiplication.  Then we subtract the multiplication of the channel and soft signal for the k-th user. By doing so only about 2*Nrx multiplication is needed for each user in Eq. 5b. In Eq. 5c, the variance of other users’ interference is calculated. Similar to the case of Eq. 5b, we can first calculate the total variance. Then each user’s variance is subtracted. Due to the extra square operation compared to Eq. 5b, about 4*Nrx multiplication is needed for each user for the operation in Eq. 5c. The calculations in Eq. 5b and Eq. 5c consider the number of antennas, where Rx combining operation is included. After the preparation in Eq. 5a - 5c, soft cancellation is conducted in Eq. 5d, e.g., to subtract the mean value of other user’s interference. This soft IC requires roughly one complex multiplication and one real division, which may be approximated to 2 complex multiplications.

                                             (4)

                                        (5a)

                                        (5b)

                              (5c)

                                (5d)
So the total computation complexity of MF based ESE detector and soft IC per user per data RE can be roughly estimated in Table 7. The approximation of soft cancellation complexity assumes Nrx = 2.
Table 7 Computation complexity MF based ESE detector and soft IC
	Key computations
	Complexity roughly in #complex multi per user per data RE
	Approximation as single-term formulae

	Soft symbol reconstruction
	Negligible
	0

	Soft cancellation
	3 + 6*Nrx  
	O(6*Nrx)


EPA detector and soft IC
The underlying assumption of EPA is that the transmitted signal of a given user can be approximated as Gaussian distribution. EPA can be implemented in conjunction with MMSE to improve the performance [3].
EPA Algorithm
· Initialization (for each outer iteration)
Calculate the prior probability of each state/constellation point by using prior LLR (in the 0-th outer iteration, the prior LLR is initialized to be zero):

		(6)


where,  is the i-th bit value (1 or -1) of the constellation point (or the element of transmitted symbol vector), which is .  M is the number of bits to be mapped to constellation points, e.g., M = log2(S), where S is the number of constellation points.
· EPA
For the t-th EPA inner iteration:
· For the VN update
· Update the probability of each state or constellation point

		 (7)

For each user, S*du times of complex multiplication are needed to calculate the Euclidean distance between  and the constellations, where du is the number FN nodes (or resource elements) connected to each user. 
· Compute the mean  and the variance  with respect to (w.r.t.) .

		 (8a)

		 (8b)

For each user, calculating the mean  and in (8a) takes du*S times of complex multiplication to get the mean value on du resource elements (REs); similarly, calculating variance  in (8b) takes 2*du*S times of complex multiplication to get the variance on du REs, including du*S times of complex multiplication to get the Euclidean distance between  and the constellation points. 
· Update the message from VN to FN

		 (9a)

		 (9b)
For each user, 2*du/L multiplications or division are needed in (9a) and (9b) respectively, so do that in formula (11a) and (11b), where L is the sequence length in the codebook.
· For the FN update:
· 

Compute the mean  and variance 
This step can be seen as the equalization with a priori information.

		 (10a)

		 (10b)


where. The diagonal elements of  are the posterior variances . It is seen that Nrx3 multiplication are needed to invert the matrix of size Nrx by Nrx, and 3/2*df*Nrx2 +5/2*df*Nrx multiplication are needed for the matrix multiplications for each data resource element in (10a). While in (10b), only df*Nrx multiplications are needed since most intermediate variances are already obtained in (10a). Here, Nrx is the number of receiver antennas and df is the number of user connected to one resource element.

· Update the message from FN to VN

		 (11a)

		 (11b)
Let du be the number of VN/user connected to one FN, df be the number of FN/RE connected to one VN/user, the computation complexity of EPA is analyzed as below. The approximation of soft symbol reconstruction complexity assumes Nrx = 2, df = 6, du = 2, S = 8, L = 4, K = 12.
Table 8 Computation complexity of EPA
	Key computation
	Formula
	Complexity roughly in #complex multi per user per data RE
	Approximation as single-term formulae

	LLR to prob conversion (for each outer iteration)
	(6)
	S*log2(S)/L
	O(S*log2(S)/L)

	Soft symbol reconstruction
	(7) + (8) +(10)
	4* du*S/L+ (Nrx3+3/2*df*Nrx2+7/2*df*Nrx)/K
	O(6* du*S/L)

	Message passing
	(9)
	4* du/L
	O(4* du/L)

	Message passing
	(11)
	4* du/L
	O(4* du/L)



Channel decoder
For LDPC, the decoding complexity quite depends on the average column weight, denoted as dv, and the average row weight, denoted as dc of the proto matrix. Table 9 lists several values of dv and dc which are the code rate dependent, e.g., links to (TBS, modulation, spreading factor)[4].
Table 9 Average column/row weight of NR LDPC BG2 matrix
	(TBS, Modulation, SF)
	dv
	dc

	(10 bytes, QPSK, 2)
	3.79
	4.69

	(20 bytes, QPSK, 2)
	3.77
	5.28

	(20 bytes, QPSK, 4)
	3.43
	6.55


Table 10 shows the rough number of additions, table lookup, comparisons for different options of LDPC decoder implementation for a code block that has Kbit of information bits and Nbit of encoded bits. Usually the number of decoding iterations for LDPC is set Ninner_LDPC = 20. For some types of receivers, Ninner_LDPC can be set a little smaller.
Table 10 Approximate number of additions, table lookups and comparisons 
	Major processing
	Optimal decoding:
Log-BP + ideal kernel
	Sub-optimal decoding:
Log-BP + Min-Sum + Offset

	Check node processing (per iteration per data block)
	#Add : dv*Nbit + (2dc - 1)*(Nbit - Kbit)
#LUT : 2dc*( Nbit - Kbit)
	#Add : dv*Nbit  + 2*(Nbit - Kbit)
#Comp : (2dc - 1)*( Nbit - Kbit)

	Bit node processing (per iteration per data block)
	#Add : dv*Nbit
	#Add : dv*Nbit

	Total (with multiple inner iterations) per coded bits, in #additions
	#Addition
	(2dv*Nbit + (2dc - 1)*(Nbit - Kbit))* Ninner_LDPC/ Nbit
	(2dv*Nbit  + 2*(Nbit - Kbit))* Ninner_LDPC/Nbit

	
	#Comparison
	
	(2dc - 1)*( Nbit - Kbit)* Ninner_LDPC /Nbit

	
	#LUT
	2dc*( Nbit - Kbit)* Ninner_LDPC /Nbit
	

	Approximate total (converted to #complex multi.)
	-
	O(4*dv * Ninner_LDPC/)


Since min-sum is widely used in real receiver implementation, we focus on its complexity analysis. To simplify the analysis, we assume that binary addition and binary comparison have the similar complexity. Assuming dv = 3.43, dc = 6.55, Kbit = 176, Nbit = 432. The total complexity can be approximated as O(4*dv * Ninner_LDPC/) if counted as the number of complex multiplications where  is the conversion factor from real addition to complex multiplication. Usually one complex multiplication is about the complexity of 3 real multiplications and 5 real additions. Assuming one real multiplication has the similar complexity of 6 real additions. One complex multiplication is about the same complexity of 3*6 + 5 = 23 real additions which can be round-up to 25.

User detection
Assuming DMRS having NAP pre-configured DMRS ports, UE detection is performed by correlating the received signal on DMRS resource elements and the DMRS sequence hypotheses. For each port of hypothesis, NLen_DMRS *Nrx complex correlations (or multiplications) are needed, where NLen_DMRS is the length of DMRS entire sequence, considering the number of OFDM symbols for DMRS. Nrx is the number of receive antennas. Hence, roughly NAP*NLen_DMRS *Nrx complex correlations are needed for UE detection. Correlated results from each antenna will then be averaged, squared and summed up to obtain a UE detection parameter TD = ||h1||2+ ||h2||2+... +||hNrx||2 to facilitate user detection, where an additional NAP *Nrx is needed.Per active UE wise, approximately O(NAP*NLen_DMRS *Nrx/( K* NPRB *NPRBdata-RE)) complex multiplications are needed.
Channel estimation
DMRS based channel estimation can be done by correlating OCC code with the received signal in the position of DMRS ports. To estimate the channel of each RE, MMSE interpolation (e.g., Wiener filtering) or polynomial fitting is needed. For uRLLC/eMBB scenarios with wider bandwidth, MMSE interpolation is preferred, in order to obtain more accurate channel estimation. The generation of the filtering matrix W requires matrix inversion of size NCE_DMRS, i.e. the number of channel samples estimated through DMRS in frequency domain within the occupied BW. The computation complexity is therefore (NCE_DMRS)3 .The filtering process requires a matrix multiplication of (NPRB *NPRBsc* NCE_DMRS). In total, the computation complexity for Wiener filtering per UE per data RE is (NPRB *NPRBsc * NCE_DMRS + (NCE_DMRS)3)/(NPRB *NPRBdata-RE). 
For mMTC scenarios, polyfitting plus linear interpolation can be employed. For less frequency selective channel, i.e. TDL-A, order 2 poly-fitting is sufficient, while for TDL-C channel, poly-fitting with higher order up to 6 is needed. The poly-fitting is based on the least square principle. Its computation complexity is roughly (2*(P+1)3+ 2* NCE_DMRS *P2)/( NPRB *NPRBdata-RE) per UE per data RE, where P is the order of the fitting polynomial. Approximately, O(2* NCE_DMRS *P2/NPRB /NPRBdata-RE) if assuming P = 2, NCE_DMRS = 12.
Additional complexity for DFT-S-OFDM waveform
For DFT-S-OFDM waveform, in terms of complexity analysis, there are two differences from the operation for CP-OFDM waveform. The first one is related to the available DMRS ports. Only NR Type I DMRS is supported for DFT-S-OFDM, with maximum of 8 ports. Therefore NAP = 8 for DFT-S-OFDM waveform. However for CP-OFDM waveform, NAP can be up to 12. The UE detection complexity is therefore different.
The second difference is the extra FFT operations when a user’ symbols are regenerated, either in soft or hard fashion.  Suppose the FFT pre-coding is carried out in NFFT points. At the receiver, the additional computation complexity for IFFT is log2(NFFT) per data RE per UE for hard symbol reconstruction. For ESE receiver, the complexity is Nouter * log2(NFFT). For EPA receiver, the complexity is  Ninner_detNouter. * log2(NFFT).

Overall computation complexity estimate
Based on the analysis in previous sections, approximate computation complexity analysis for each major receive component can be filled in Table 11.
Table 11 Computation complexity approximation formulae
	Receiver component
	Detailed component
	Computation in parametric number of usages, O(.) analysis, [impact factor]

	
	
	MMSE-IRC
	MMSE-hard IC
	ESE+SISO
	EPA+SISO

	Detector (complexity in #complex multi. per user per resource element)

	UE detection 
	O(NAP*NLen_DMRS *Nrx/K /NPRB /NPRBdata-RE)
	O(NAP*NLen_DMRS *Nrx/K/NPRB /NPRBdata-RE)
	O(NAP*NLen_DMRS *Nrx/K/NPRB /NPRBdata-RE)
	O(NAP*NLen_DMRS*Nrx/K/NPRB /NPRBdata-RE)

	
	Channel estimation
	O( 2* NCE_DMRS *P2/NPRB /NPRBdata-RE)
	O( 2* NCE_DMRS *P2/NPRB /NPRBdata-RE)
	O( 2* NCE_DMRS *P2/NPRB /NPRBdata-RE)
	O(2* NCE_DMRS *P2/NPRB /NPRBdata-RE)

	
	Rx combining, if any
	
	
	
	

	
	Covariance matrix calculation, if any
	O(*(Nrx *L)2/2/ NPRBdata-RE)
	O(*(Nrx *L)2/2/ NPRBdata-RE)
	
	

	
	Demodulation weight computation, if any
	O(2 *(Nrx *L)3 /K/ NPRBdata-RE  )
	O(2 *(Nrx *L)3 /K/ NPRBdata-RE  )
	
	

	
	UE ordering, if any
	
	O (Nrx *L*K/2/ NPRBdata-RE)  
	
	

	
	Demodulation, if any
	O(Nrx)
	* Nrx) 
	
	

	
	Soft information generation, if any
	
	
	
	

	
	Soft symbol reconstruction, if any
	
	
	
	O(6*Ninner_detNouter *du*S/L) 

	
	Message passing, if any
	
	
	
	 O(8*Ninner_detNouter*du/L)

	
	Others
	
	
	
	

	Decoder (complexity in #complex multi per user per coded bit)
	LDPC decoding 
	O(4*dv * Ninner_LDPC/)
	O(4**dv * Ninner_LDPC/)
	O(4*dv * Ninner_LDPC*Nouter/)
	O(4*dv * Ninner_LDPC*Nouter/)

	Interference cancellation (complexity in #complex multi per user per resource element)
	Symbol reconstruction(Including FFT operations for DFT-S-OFDM waveform), if any
	
	For CP-OFDM: O(Nrx) 

Additional for DFT-s-OFDM:  O(log2(NFFT))

	Additional for DFT-s-OFDM:
O(Nouter * log2(NFFT)).
	 Additional for DFT-s-OFDM:
O(Ninner_det*Nouter * log2(NFFT))

	
	LLR to probability conversion, if any
	
	
	
	O(Nouter* S*log2(S)/L) 

	
	Interference cancellation
	
	
	 O(6* Nouter*Nrx)  
	

	
	LDPC encoding, if any
	
	
	
	

	
	Others
	
	
	
	



To get more feeling about the complexity, several example values of related parameters are listed in Table 12 where TBS = 20 bytes, 6 PRB resource allocation, 2 receive antennas, 72-point FFT and 12 users are assumed. Besides those general parameters, specific parameters for MMSE receiver, EPA + SISO receiver, ESE + SISO receiver are also listed, together with the setting for channel decoder. Substituting those values to the formulae in Table 11, computation complexity for detailed processing components can be calculated as shown in Table 13.
Table 12 Example values of parameters for computation complexity calculation
	Category
	Parameter
	Notation
	Value

	General
	Number of receive antennas
	Nrx
	2

	
	Number of data resource elements in a PRB
	NPRBdata-RE  
	144

	
	Number of users
	K
	12

	
	FFT size
	NFFT
	72

	MMSE and EPA related
	Spreading length
	L
	4

	MMSE-hard IC specific
	Extra processing compared to MMSE-IRC
	
	1.3

	
	Number of times per PRBs for the update of covariance matrix and MMSE weight
	
	6

	Channel coding related
	Average column weight of LDPC proto-matrix
	dv
	3.43

	
	Average row weight of LDPC proto-matrix
	dc
	6.55

	
	Number of information bits in a code block
	Kbit
	176

	
	Number of coded bits of a block
	Nbit
	432

	
	Number of inner iterations of LDPC decoding
	Ninner_LDPC
	20 (for MMSE and EPA), 5 (for ESE)

	
	Complexity conversion ratio from real addition to complex multiplication
	
	25

	Soft IC specific
	Number of outer iterations between detector and decoder
	Nouter
	10 (for ESE), 3 (for EPA

	EPA specific
	Number of inner iterations inside detector
	Ninner_det
	3

	
	Number FN nodes (or resource elements) connected to each user
	du
	2

	
	Number of user connected to one resource element
	df
	6

	
	Number of constellation points
	S
	8

	User detection & channel estimation related
	Number of antenna ports of DMRS
	NAP
	12

	
	Number of estimated channel samples
	NCE_DMRS
	12

	
	DMRS sequence length
	NLen_DMRS
	24

	
	Order of fitting polynomial 
	P
	2

	
	Number of PRBs
	NPRB
	6









Table 13 Example of computation complexity approximation with example values of parameters
	Receiver component
	Detailed component
	Computation in parametric number of usages, O(.) analysis, [impact factor]

	
	
	MMSE-IRC
	MMSE-hard IC
	ESE+SISO
	EPA+SISO

	Detector 

(complexity in #complex multi. per user per resource element)

	UE detection 
	0.11
	0.11
	0.11
	0.11

	
	Channel estimation
	0.11
	0.11
	0.11
	0.11

	
	Rx combining, if any
	
	
	
	

	
	Covariance matrix calculation, if any
	1.3
	1.3
	
	

	
	Demodulation weight computation, if any
	3.6  
	3.6  
	
	

	
	UE ordering, if any
	
	0.3
	
	

	
	Demodulation, if any
	2
	2.6
	
	

	
	Soft information generation, if any
	
	
	
	

	
	Soft symbol reconstruction, if any
	
	
	
	216

	
	Message passing, if any
	
	
	
	 36

	
	
	
	
	
	

	Decoder 

(complexity in #complex multi per user per coded bit)
	LDPC decoding 
	11
	14
	27
	33

	Interference cancellation 

(complexity in #complex multi per user per resource element)
	Symbol reconstruction (Including FFT operations for DFT-S-OFDM waveform), if any
	
	2

Additional for DFT-s-OFDM:  6

	Additional for DFT-s-OFDM:  
60

	 Additional for DFT-s-OFDM:  
54


	
	LLR to probability conversion, if any
	
	
	
	18

	
	Interference cancellation
	
	
	120
	

	
	LDPC encoding, if any
	
	
	
	

	
	Others
	
	
	
	







Compatibility with legacy receiver structure
For orthogonal multiple access transmissions (OMA), MMSE-IRC is usually sufficient for suppressing SU-MIMO cross-layer interference or other cell interference. Even in MU-MIMO, MMSE-IRC may be enough if the co-scheduled users can be well separated in spatial domain. Therefore, MMSE-IRC is the legacy receiver implementation at eNB/gNB in many grant-based transmissions. Apparently, such implementation has been well tested and is very mature.
It is quite likely that the receiver of NOMA transmission and the receiver of OMA grant-based transmission would share the same hardware platform at gNB, in order to save the development effort and lower the production cost. Given the maturity of MMSE-IRC, a preferable choice would be to use the similar architecture of MMSE-IRC for NOMA receiver. From the discussion in Section 2, it is quite clear that MMSE-SIC looks much closer to MMSE-IRC, than ESE/EPA +SISO receivers. For instance, both use MMSE to suppress cross-user and other interference. Both use the hard decoder, without the need to store LLR of the bits. Neither requires iterative detection and decoding. In another word, most of detection processing is the same and the entire decoding processing are the same. The only difference would be the interfering signals regeneration and subtraction.
On the other hand, both ESE and EPA based receivers have unique detection processing quite different from the linear MMSE operation. Both them require iterative detection and decoding where the decoder has to be soft-output. The memory size to store those LLR bits is significant. A great amount of development work is expected since neither ESE/EPA detector, nor the SISO decoder has been well implemented and tested in real hardware and environment.

Conclusion
In this contribution, computation analysis of each breakup was performed by using the complexity analysis template agreed in RAN1# 94.  Observation and proposal were made as follows.
Observation 1 MMSE-hard IC receiver is preferred for NOMA due to its compatibility to the architecture of legacy MMSE-IRC receiver and the moderate complexity.

Proposal 1: to prioritize schemes with MMSE-hard IC as the typical receiver, if similar performance can be obtained between MMSE-hard IC receiver and ESE/EPA + SISO receivers.
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