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1 Introduction
In RAN1#92~#93 meeting, the link-level and system-level evaluation assumptions and performance metric have been agreed [1, 2, 3]. 
In this contribution, based on the agreed assumptions, we firstly provide the link-level simulation results for UGMA, NOMA with WBE sequences, RSMA and SCMA and then analyze the impacts of spreading factor, spreading sequences and SNR distribution, etc., on the performance. We also provide the system-level evaluation results of OMA and UGMA.
2 Link-level simulation results
In this section, we provide the LLS results under various conditions and try to figure out the impacts of different NOMA designs on performance.
2.1 Impacts of sequences design
Symbol-level spreading is a widely used method to distinguish multiple users in uplink NOMA transmission. Nearly all the designs of spreading sequences in NOMA SI target to generalized welch-bound equality (GWBE) under multiple power or SNR setups, where Welch-bound equality (WBE) is a special case in GWBE under equal SNR.
(1) Equal SNR
Under the condition of equal SNR, the performance of GWBE sequences designed for various SNR setups are evaluated to validate the robustness of GWBE sequence design in Figure 1~Figure 3. Legends “GWBE2G6dB”, ‘GWBE3G3dB’ and ‘GWBE7G1dB’ denote GWBE sequences designed for uniform SNR distribution in sets {-3dB, +3dB}, {-3dB, 0dB, +3dB} and {-3dB, -2dB, -1dB, 0dB, 1dB, 2dB, 3dB}, respectively.
Based on the results in Figure 1~Figure 3, it can be found that GWBE sequences achieve similar performance with WBE sequences under equal SNR under small TBS and slightly better performance than WBE in large number of users and large TBS, i.e., high sum spectral efficiency.
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(a) 8UE                                               (b) 12UE                                            (c) 16UE
[bookmark: _Ref521601957]Figure 1 BLER of various GWBE sequences under equal SNR, fixed sequence allocation, ideal CE, mMTC
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[bookmark: _Ref521601959]Figure 2 BLER of various GWBE sequences under equal SNR, random sequence allocation, ideal CE, mMTC
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[bookmark: _Ref521601960]Figure 3 BLER of various GWBE sequences under equal SNR, fixed sequence allocation, ideal CE, eMBB
(2) Unequal SNR
The performance of WBE and various GWBE sequences under unequal SNR distribution is shown in Figure 4 and Figure 5, where the legends “SNRdist1”, “SNRdist2” and “SNRdist3” represent the uniform SNR distribution in set {-3dB, -2dB, -1dB, 0dB, 1dB, 2dB, 3dB}, {-3dB, 0dB, +3dB} and {-3dB, +3dB}, respectively. 
BLER under small and large TBS, i.e., low and high spectral efficiency, are provided in Figure 4 and  Figure 5, respectively. It can be found that the performance of WBE and various GWBE sequences are similar for small TBS, while GWBE sequences achieve better performance than WBE sequences for large TBS. This indicates that GWBE sequences are more robust than WBE sequences under various SNR distributions.
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[bookmark: _Ref521603849]Figure 4 BLER of various GWBE sequences under unequal SNR, fixed sequence allocation, LS CE, mMTC
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[bookmark: _Ref521603850]Figure 5 BLER of various GWBE sequences under unequal SNR, fixed sequence allocation, ideal CE, mMTC
Observation 1: GWBE sequences achieve similar performance with WBE under small TBS and better performance than WBE under large TBS, and are more robust under various SNR distributions.
2.2 [bookmark: OLE_LINK9][bookmark: OLE_LINK10][bookmark: OLE_LINK11]Impacts of user grouping on NOMA schemes
As a common method, user grouping with multi-level powers can be combined with other NOMA schemes for further performance enhancement as shown in Figure 6 and Figure 7. 
In Figure 6, we evaluate SCMA in [4] with user grouping and UGMA in the condition of 16 users and 40 Bytes TBS. Here, two user groups with 6dB SNR gap are considered, where 8 users are in group 1 with x+3dB average SNR and 8 users are in group 2 with x-3dB average SNR. Firstly, it can be found that user grouping can enhance the performance of SCMA. Secondly, UGMA can achieve better performance than SCMA under ideal channel estimation and high overloading.
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[bookmark: _Ref521612337]Figure 6 BLER of SCMA with user grouping
The results of combining RSMA in [5] with user grouping are provided in Figure 7. Similarly, user grouping can enhance the performance of RSMA and UGMA can achieve better performance than RSMA in the condition of high overloading.
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[bookmark: _Ref521612338]Figure 7 BLER of RSMA with user grouping
Observation 2: User grouping can be combined with existing NOMA schemes for performance enhancement.
2.3 Impacts of multi-branch structure
To evaluate the impacts of multi branch on the performance, we evaluate RSMA with single branch with spreading factor 1 and 4 as well as multiple branches with spreading factor 4 in Figure 8. 
It can be found that firstly under the spreading factor 4, the performance of single-branch RSMA is much poorer than that of RSMA with 4 branches. This is because under the same spreading factor, the coding rate in four branches structure is four times lower than the single branch structure, i.e., additional coding gain can be achieved in multi-branch structure. 
Besides, under same coding rate, the performance of single-branch RSMA without spreading (i.e., SF=1) is nearly the same with 4-branch RSMA with spreading factor 4, i.e., same coding gain can be achieved. This indicates that multi-branch structure can enhance the performance of NOMA scheme with spreading.
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[bookmark: _Ref521614181]Figure 8 BLER of RSMA with different number of branches and spreading factor
Observation 3: Multi-branch structure can reduce the coding rate, obtain larger coding gain and hence enhancement the performance.
Proposal 1: GWBE sequences, user grouping and multi-branch structure should be considered as candidates for uplink NOMA.
3 System-level simulation results
In Figure 9 and 10, the SLS results of NOMA and MU-MIMO for eMBB is shown. It can be seen that compared with OMA, NOMA schemes can significantly reduce the PDR.
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Figure 9 PAR vs PDR of OMA and NOMA
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[bookmark: _GoBack]Figure 10 PAR vs PDR of OMA and NOMA
4 Conclusion
In this contribution, we provided and analyzed link-level, system-level evaluation results for uplink non-orthogonal multiple access based on the agreed evaluation assumptions. The following observations and proposals are obtained:
Observation 1: GWBE sequences achieve similar performance with WBE under small TBS and better performance than WBE under large TBS, and are more robust under various SNR distributions.
Observation 2: User grouping can be combined with existing NOMA schemes for performance enhancement.
Observation 3: Multi-branch structure can reduce the coding rate, obtain larger coding gain and hence enhancement the performance.
Proposal 1: GWBE sequences, user grouping and multi-branch structure should be considered as candidates for uplink NOMA.
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