Page 4
Draft prETS 300 ???: Month YYYY
[bookmark: _GoBack]3GPP TSG-RAN WG1 Meeting #93	Tdoc R1-1807250
Busan, Korea, May 21st – 25th 2018

Agenda Item:	7.1.3.1.5
Source:	Ericsson
Title:	On Improvements to the Search Space Design
Document for:	Discussion and Decision
1	Introduction
In RAN1#92bis, the following agreement and working assumption were made for search space design regarding how to meet the BD and CCE limits.
Agreements:
· UE is not expected to be configured with PDCCH monitoring in CSS(s) for more than what UE can monitor in terms of numbers of BDs/CCEs

Working assumption:
· At least for Case 1-1 and Case 1-2, map all candidates of USS search-space-set with lower SS set ID before candidates of USS with higher ID
· If all candidates in a SS set can’t be mapped, any candidates in the SS set and in any subsequent SS sets are dropped (not mapped)
· Case 2 FFS

In this contribution, we provide some observations on the current search space design based on performance evaluations that may inform any potential improvements to the current search space design that may be considered.
[bookmark: _Ref178064866]2	Discussion
2.1	PDCCH candidate prioritization
The current search space design prioritizes PDCCH candidates in common search spaces over those in UE-specific search spaces and those with lower search space set ID numbers over those with higher search space set ID numbers. If all the blind decodes for a search space set cannot be accommodated within the blind decode and CCE processing limits, the search space set is not monitored.
Various candidate prioritization methods have been discussed and are summarized below. If candidates are to be dropped, they are dropped in increasing order of the priority value.
· For the method discussed in [3], each PDCCH candidate is given a priority m/ML, where m is the candidate index within an aggregation level and ML is the number of candidates of a given aggregation level L. If two candidates have the same metric, then the one with the higher aggregation level has higher priority.
· For the method in [4], candidate(s) are prioritized based on the number of CCEs that will be reduced from the pool for channel estimation, if the candidate were to be dropped. In the case that multiple candidates with same metric are identified, their index in the search space may dictate their precedence.
· Another method discussed, which is an extension of the method currently in the specification, was to prioritize candidates first according to the search space type (CSS > USS), search space set number within a search space type (lower numbers have higher priority) and aggregation level within a search space set (higher aggregation levels have higher priority).

A closer analysis of the first two prioritization methods above reveals that the scheme proposed in [3] gives a good prioritization between candidates of different aggregation levels since it tends to keep the balance between candidates of different aggregation levels. On the other hand, among the candidates of an aggregation level its prioritization is arbitrary. Consequently, candidates are sometimes dropped that do not reduce the footprint since they fully overlap with another candidate. Therefore, more candidates than necessary are dropped.
On the other hand, the principle proposed in [4] gives a sound prioritization among the candidates within a given aggregation level. Unfortunately, it tends to drop candidates of higher aggregation levels first, often resulting in a shortage of high level candidates with increased blocking consequently.
In our evaluations, we consider the following prioritization methods.
Method 1) Prioritize candidates first according to the search space type (CSS > USS), then according to search space set number within a search space type (lower numbers have higher priority) and finally according to aggregation level within a search space set (higher aggregation levels have higher priority). Candidates are added one by one, starting from the candidates of the highest aggregation level and proceeding to lower. Any candidate that would make the CCE footprint size exceed the CCE limit is dropped. This procedure continues until all candidates at all aggregation levels have been considered.
Method 2) A hybrid prioritization method based on the first two methods listed above which works as follows:
· Priority values are defined per search space as , where is the configured number of candidates of the search space and is the remaining number of candidates of the search space (this is equivalent to the priority value defined in [3] for the candidate of lowest priority of the remaining candidates in the search space). These priority values are used to select a search space (aggregation level) within a search space set.
· Within the candidates of an aggregation level, candidates are prioritized according to the number of CCEs by which the footprint would be reduced if the candidate were to be dropped.
· If a candidate is dropped from a search space, of that search space is reduced by 1.
2.2	Current hashing function with dropping of candidates due to CCE limitation
A key element that was left for further study was the maximum limit on the number of blind decodes and the number of CCEs that a UE capable of supporting URLLC traffic is expected to process for PDCCH decoding. To address this, we consider the performance with the current hashing function when candidates that cause the limit to be exceeded are dropped.
Which of the limits (blind decode or CCE processing) is going to be the limiting factor in determining the number of PDCCH candidates that the UE can ultimately attempt decoding for in a slot will depend on the scenario. For instance, if a UE has a limit of 56 CCEs and is configured with a single CORESET in the slot that spans only one OFDM symbol, then the CCE limit should not be an issue since the maximum number of PRBs in a carrier is 275 and this corresponds to less than 56 CCEs. However, if a UE is configured to monitor a two or three symbol CORESET, or multiple CORESETs in a slot and the number of CCEs for all CORESETs is high, the CCE limit could limit the number of PDCCH candidates for which decoding can be attempted since the CCE limit of 56 CCEs has to be shared among the many CORESETs in the slot.

[image:]
Figure 1: Blocking performance as the channel estimation limit on the number of CCEs is increased in a CORESET with 60 CCEs, with blind decode candidate assignments of 6/6/4/2 at aggregation levels 1/2/4/8 and with 16 users being simultaneously scheduled.
The figure above shows the blocking performance as a function of the CCE limit for channel estimation for a single CORESET. Sixteen UEs are assumed to have search space sets defined by the LTE EPDCCH hashing function within the same CORESET. The CORESET size is 60 CCEs. As indicated earlier, candidate dropping is used to adjust the CCE footprint (the set of CCEs that the PDCCH candidates span) size to the CCE limit. The figure shows the performance for two PDCCH candidate prioritization methods as described in Section 2.1. As can be seen from the figure, as the CCE limit assigned to the CORESET is reduced, the blocking probability starts to increase significantly. In this case, the difference between a CCE limit of 24 and 36 is significant. In a situation where the UE has to monitor multiple CORESETs in a slot (Case 2 from previous agreements), it is quite possible that a UE may only be able to process 24 CCEs for the CORESET. For instance, if a UE needs to monitor two CORESETs in a slot and supports only a limit of 48 CCEs per slot, one of the CORESETs may only have 24 CCEs of channel estimation capacity. Thus, there is a clear benefit to supporting a high number of CCEs for Case 2 under the current search space and PDCCH candidate monitoring procedure.
[bookmark: _Toc513799141]The number of CCEs for Case 2 needs to be greater than the CCE limit agreed for Case 1-1 and 1-2 to reduce the risk of increased blocking probability.
2.3	Alternatives for hashing functions and handling of candidates when CCE limit is exceeded
If it is desired not to significantly increase the currently defined CCE limits for Case 2, the currently defined hashing function, may impact blocking probability in some scenarios as highlighted in the previous section. Modifications to the hashing function to reduce blocking probability, which have been discussed in past meetings, can be considered as an alternative. Options have also been discussed in past meetings on the handling of PDCCH candidates when the CCE limit is exceeded, as an alternative to the current specification which states that candidates are dropped until the CCEs to be processed are within the limit. One option is to consider an approach where the remaining PDCCH candidates are rehashed rather than dropped once the CCE limit is reached for a subset of the candidates, so that they do not lead to an increase in the CCEs to be processed.
The above modifications are probably undesirable considering the time remaining for the completion of Rel-15, but may be necessary to consider if the blind decode and CCE processing limits are not increased for URLLC traffic.
In the following, the various combinations of hashing functions and handling of remaining candidates that have been evaluated are described.
LTE EPDCCH hashing with subsequent candidate dropping using method 1. The hashing function is described in [1]. In short, the PDCCH candidates of a given aggregation level are spread out as evenly as possible in the CORESET. The placement of the candidates between different aggregation levels are uncoordinated. Candidate dropping is based on the first method for prioritization described in section 2.1 which extends the dropping method that is currently specified.
LTE EPDCCH hashing with subsequent candidate dropping using method 2. This is similar to the above method except that the candidate dropping is based on the second method for prioritization described in section 2.1.
Random nested hashing with pseudo candidates. For the highest aggregation level, candidates are randomly picked among all possible candidates in the CORESET. For lower aggregation levels, candidates are randomly picked within the footprint of the candidates of the highest aggregation level. To increase the number of CCEs beyond what is implied by the number of candidates at the highest aggregation level, so called pseudo candidates are used to increase the footprint to the CCE limit. These are randomly picked for the highest aggregation level and are included in the footprint of the highest aggregation level but may not be used to transmit PDCCH at that aggregation level. This hashing function, by design hashes all candidates within the CCE limit although a CCE limit per CORESET needs to be assigned.
Sub-band hashing with subsequent candidate dropping. This hashing function is described in [3]. In short, the LTE EPDCCH hashing function is used as a basis to divide the CORESET into sub-bands. Within each sub-band, one candidate is randomly picked. The placement of the candidates between different aggregation levels is uncoordinated. Candidate dropping is based on the second prioritization method described in section 2.1.
Semi-constrained LTE EPDCCH hashing. The second prioritization method is used to prioritize candidates. That is, starting from the highest aggregation level and proceeding to successively lower aggregation levels, candidates for that aggregation level in all the search space sets within the CORESET are added, one at a time to grow a footprint. The footprint is grown until the CCE limit is reached. For the aggregation levels whose candidates are all added at this point, the PDCCH candidate positions are kept where they are. For the aggregation levels whose candidates are only partially added or not added at all, the PDCCH candidates are rehashed within the CCE footprint, also using the LTE EPDCCH hashing function but on the smaller set of CCEs that constitute the footprint.
Semi-constrained sub-band hashing. Same principle as the semi-constrained LTE EPDCCH hashing is used but the sub-band hashing function proposed in [3] is used to define the PDCCH candidates instead of the LTE-EPDCCH hashing function.
To cover a wide range of scenarios, the configurations in Table 1 are evaluated:
[bookmark: _Ref506566581]Table 1. Evaluated scenarios.
	
	Scenario 1
	Scenario 2
	Scenario 3

	Number of CCEs in CORESET
	32
	60
	96

	Candidates for AL 1/2/4/8/16
	4/4/2/1/-
	6/6/6/2/-
	8/8/6/6/2

	AL probability distribution per DCI [%]
	[bookmark: _Hlk506566649]10/60/20/20/-
	10/60/20/20/-
	20/30/20/20/10

	Number of multiplexed UEs per CORESET[footnoteRef:1] [1: Chosen differently for each scenario to get a blocking level approximately in the range of 0.01 to 0.1.]

	8
	16
	12

In these scenarios, the various hashing functions are evaluated for different levels of the CCE limit. In the figures below the average blocking probability versus the CCE limit is shown.
[image:]
[bookmark: _Hlk506510750]Figure 2: Blocking performance as the channel estimation limit on the number of CCEs is increased in scenario 1.
[image:]
Figure 3: Blocking performance as the channel estimation limit on the number of CCEs is increased in scenario 2.

[image:]
Figure 4: Blocking performance as the channel estimation limit on the number of CCEs is increased in scenario 3.
We make the following observations based on the results.
[bookmark: _Toc513799142]The schemes using candidate dropping experience a significant degradation in blocking performance when the CCE limit is decreased whereas the schemes using pseudo candidates or semi-constrained hashing perform well even with a small number of CCEs
[bookmark: _Toc513799143]The LTE EPDCCH hashing function performs worse than the other schemes when the CCE limit is high although the degradation is a more severe problem at lower CCE limits

The hashing function that performs best overall is the semi-constrained sub-band hashing. The procedure for determination of the CCE footprint according to this hashing function may be described using the example in Figure 5. The upper part of the Figure 5 shows how the candidates are determined for different aggregation levels without any limitations on the number of CCEs that can be processed for channel estimation. The figure shows that the final CCE footprint including the CCEs corresponding to all the aggregation levels is 40 CCEs. The candidates for each aggregation level and the final CCE footprint (in grey) are shown.
[image:]
[bookmark: _Ref506495310]Figure 5: Example of determination of the CCE footprint
In the lower part of the figure, the CCE footprint that is computed when the CCE limit is 24 CCEs is shown. As can be seen, the CCE footprint is determined based on the 2 aggregation level 8 candidates and 2 of the 4 aggregation level 4 candidates. After the CCEs for the second aggregation level 4 candidate, the CCE limit of 24 CCEs is reached. Therefore, all the candidates at aggregation level 4 and lower are re-hashed within the CCE footprint of 24 CCEs shown in grey after step 4 in the lower half of the figure.
The rehashing within the CCE footprint instead of the entire CORESET is performed by applying the hashing function using virtual indices that are contiguous across the CCEs in the CCE footprint that may be dis-contiguous in the original CORESET. Once the PDCCH candidates are determined within this CCE footprint with virtual indices, the virtual indices are mapped back to the original indices within the CORESET.
[image:]
Figure 6: The virtual indexing used for indexing the CCE footprint within which the rehashing of candidates that cause the CCE limit to be exceeded.
The resulting candidates at all aggregation levels as computed according to the semi-constrained sub-band hashing are shown below in Figure 7.
[image:]
[bookmark: _Ref506564934]Figure 7: Example of PDCCH determination. The example has a CORESET of 60 CCEs with 6/6/4/2 candidates at aggregation levels 1/2/4/8.
Based on the results above, we make the following observation.
[bookmark: _Toc513799144]When mapping PDCCH candidates, if the CCE limit is reached when mapping candidates of aggregation level L in a search space set, it is desirable to rehash the candidates for aggregation levels L and below (candidates of aggregation level L that have already been processed need to be re-hashed) within the footprint of the already assigned CCEs in the CORESET.

3	Conclusion
In the previous sections we made the following observations:
Observation 1	The number of CCEs for Case 2 needs to be greater than the CCE limit agreed for Case 1-1 and 1-2 to reduce the risk of increased blocking probability.
Observation 2	The schemes using candidate dropping experience a significant degradation in blocking performance when the CCE limit is decreased whereas the schemes using pseudo candidates or semi-constrained hashing perform well even with a small number of CCEs
Observation 3	The LTE EPDCCH hashing function performs worse than the other schemes when the CCE limit is high although the degradation is a more severe problem at lower CCE limits
Observation 4	When mapping PDCCH candidates, if the CCE limit is reached when mapping candidates of aggregation level L in a search space set, it is desirable to rehash the candidates for aggregation levels L and below (candidates of aggregation level L that have already been processed need to be re-hashed) within the footprint of the already assigned CCEs in the CORESET.

[bookmark: _In-sequence_SDU_delivery]References
[bookmark: _Ref506563130][bookmark: _Ref485295645][bookmark: _Ref481400987]3GPP TS 38.213
[bookmark: _Ref508278942]R1-1802903, ”Remaining issues on search spaces”, Ericsson
[bookmark: _Ref508279424]R1-1802537, “On NR operation under PDCCH channel estimation and BD limits”, Nokia, Nokia Shanghai Bell
[bookmark: _Ref506569828]R1-1800631, ”On remaining issues of search spaces and blind detection”, Interdigital
[bookmark: _Ref510808524]R1-1805251, “Modifications to the specification for UE procedure for receiving control information”, Ericsson
	7/8	
image3.png
Average blocking probability

=

T T i T T
=—8— LTE EPDCCH hashing with candidate dropping method 1
= LTE EPDCCH hashing with candidate dropping method 2
Random nested hashing with pseudo candidates

=+©-= Sub-band hashing with candidate dropping
=©="Semi-constrained LTE EPDCCH hashing

~&— Semi-constrained sub-band hashing

20

25

30

35 40 45 50 55
Max number of CCEs

60

image4.png
Average blocking probability

T T T T
=—8— LTE EPDCCH hashing with candidate dropping method 1
= LTE EPDCCH hashing with candidate dropping method 2
Random nested hashing with pseudo candidates

=+©-= Sub-band hashing with candidate dropping
=©="Semi-constrained LTE EPDCCH hashing

~&— Semi-constrained sub-band hashing

60 70 80 920
Max number of CCEs

image5.emf
0 1 2 3 4 5 6 7 8 91011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859

CORESET (60 CCEs)

2 AL=8 candidates

4 AL=4 candidates

6 AL=2 candidates

6 AL=1 candidates

channel estimation on 40 CCEs

If UE can only perform channel estimation on 24 CCEs:

Step 1: footprint size = 8 CCEs

Step 2: footprint size = 16 CCEs

Step 3: footprint size = 20 CCEs

Step 4: footprint size = 24 CCEs

In the above example, AL=8 candidates are not restricted by UE channel estimation capability since all of its candidates are added into the footprint.

Candidates of all other candidates are restricted.

image6.emf
original indexing 0 1 2 3 4 5 6 7 8 91011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859

virtual indexing 0 1 2 3 4 5 6 7 8 91011121314151617181920212223

image7.emf
0 1 2 3 4 5 6 7 8 91011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859

2 AL=8 candidates

4 AL=4 candidates

6 AL=2 candidates

6 AL=1 candidates

image1.png
60 CCEs, 16 UEs, 6/6/4/2 candidates for L=1/2/4/8

T T T T
= | TE EPDCCH hashing with candidate dropping method 1
=6~ LTE EPDCCH hashing with candidate dropping method 2

Average blocking probability

=

20

25

I
30 35 40
Max number of CCEs

45

50

55

60

image2.png
Average blocking probability

T T T T
=—8— LTE EPDCCH hashing with candidate dropping method 1
= LTE EPDCCH hashing with candidate dropping method 2
Random nested hashing with pseudo candidates

=+©-= Sub-band hashing with candidate dropping
=©="Semi-constrained LTE EPDCCH hashing

~&— Semi-constrained sub-band hashing

10

15 20 25 30
Max number of CCEs

35

