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Introduction
The following agreements were made in the last RAN1#92 meeting.
Agreements:
· Confirm the value for Case 1-2. X=0 and Y=0 for Case 2. No consensus on additional Case 2’.
	Max no. of PDCCH BDs per slot
	SCS

	
	15kHz
	30kHz
	60kHz
	120kHz

	Case 1-1
	44
	36
	22
	20

	Case 1-2
	[44]
	
	
	-

	Case 2
	[44+X]
	[36+Y]
	[22+Y]
	[20]



Agreements:
· To adopt the TP for TS38.213 Section 10.1
· Also add one sentence in the spec saying “when the number of REGs is not sufficient for a given aggregation level, the UE is not required to monitor candidates of the given aggregation level”
· Up to spec editor for final wording
=== Start ===
Table 10.1-1: CCE aggregation levels and max number of candidates per CCE aggregation level for Type0/Type0A/Type2-PDCCH common search space
	CCE Aggregation Level
	Number of Candidates

	4
	4

	8
	2

	16
	1


=== End ===

Agreements:
· The number of CCEs for PDCCH channel estimation which refers to the union of the sets of CCEs for PDCCH candidates to be monitored, regardless of which REG-bundle size or precoder granularity.
· Overlapped CCEs associated with different CORESETs are counted separately.
· Overlapped CCEs associated with different PDCCH starting symbols with the same or different search space sets with the same CORESET are counted separately.
· Overlapped CCEs associated with same or different search space sets with the same PDCCH starting symbol associated with the same CORESET are counted one.
· Note: in the above, the overlapping CCEs for candidates for a given search space set with different starting symbols are assumed to be supported.

Agreements:
· Change Y_{p, kp} to Y_{p, ns,f }  in the search space hashing function in subclause 10.1 of 38.213, where the index ns,f  is the slot number.
· (Working assumption) The reset of the update is per radio frame

Agreements:
· The UE capability signaling for PDCCH BDs in CA is integer value from {4, …, 16}.
· Discuss further whether or not to restrict the combination of the number of CCs that a UE can support vs. the number of PDCCH BDs indicated via UE capability signalling

Agreements:
· Mp,maxL is Mp,s,maxL  which is the maximum number of PDCCH candidates for the given aggregation level L across all serving cells for the given search space set s for the given CORESET p

Agreements:
· Specify PDCCH candidate mapping rules. 
· PDCCH candidates are mapped to search-space-sets until either or both limit(s) of (number of blind decodes, CCEs for channel estimation) is/are met at least with the following rule
· SS type order, e.g. CSS  before USS 
· FFS: further rule within a search space set/type

Agreements:
· Confirm the following working assumption, with updates:
· At least for case 1-1 and case 1-2, all UE supports channel estimation capability for following numbers of 48 CCEs for a given slot per scheduled cell
· 56 CCEs for SCS = 15kHz and 30kHz
· 48 CCEs for SCS = 60kHz
· 32 CCEs for SCS = 120kHz
· FFS: cross-carrier scheduling
· FFS: wideband RS
· FFS: overbooking and/or nested structure
· FFS: exceptional case of CCE counting
· FFS: for case 2


Agreements: 
· Adopt following TP (38.213)
=== Start ===
A UE determines a PDCCH monitoring occasion from the PDCCH monitoring periodicity, the PDCCH monitoring offset, and the PDCCH monitoring pattern within a slot. For the search space set s in the control resource set p, the UE monitors PDCCH in a slot where  is satisfied, with nf being the frame number. 
=== End ===
In this contribution we discuss some of the remaining issues above as well as some additional issues that need to be addressed in relation to search spaces for NR.
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On blind decode and CCE processing limits
Limits on the number of CCEs that can be processed by a UE in a slot for channel estimation were extensively discussed and agreed at the last meeting for cases 1-1 and 1-2 where the monitoring periodicity is 14 symbols or greater. There are also limits on the total number of blind decodes that a UE needs to perform in a slot for different numerologies. The limitation on channel estimation capacity in terms of a number of CCEs is in addition to the blind decode limits. It has been agreed that “PDCCH candidates are mapped to search-space-sets until either or both limit(s) of (number of blind decodes, CCEs for channel estimation) is/are met“. Therefore, based on the current agreements it is assumed that a configuration by the network which overshoots the blind decode and/or CCE limit is a valid configuration and it is necessary to define the UE behavior when the configuration causes these limits to be exceeded. The agreements also refer to a rule for the order in which PDCCH candidates are considered based on the search space type. Even though a common search space being prioritized over UE-specific search space is given as an example, we consider this as part of the agreement. Other rules for the ordering PDCCH candidates were left for further study. Hence, the following remains to be decided.
· Details of the order in which PDCCH candidates are considered including
· Ordering of PDCCH candidates within search spaces and aggregation levels within a search space type
· Handling of PDCCH candidates if the CCE limit is exceeded (It is assumed that the PDCCH candidates are dropped if the blind decode (BD) limit is reached, until the BD limit is met).

In this section, we address the above issues and discuss some options for both of these aspects based on evaluations to assess their performance. 
On conforming to blind decode limits
When the total number of PDCCH candidates that the UE has been configured to monitor in a slot exceeds the blind decode limit for the UE, the UE must drop some candidates. While the number of blind decodes can be controlled by the network by configuration, it may be useful to have a rule defined for dropping of candidates when the number of PDCCH candidates exceeds the blind decode limit. For this, a prioritization rule such as the ones discussed in Section 2.1.3.1  could be used. For instance, one could use method 1 in Section 2.1.3.1, where candidates are first prioritized according to the search space type (CSS > USS), then according to search space set number within a search space type (lower numbers have higher priority) and finally according to aggregation level within a search space set. Once the blind decode limit is reached the remaining candidates can then be discarded. A text proposal provided in [5] uses this simple prioritization, but more complex methods as outlined below can be considered if exceeding the blind decode limit is considered to be a significant issue.
The above simple approach may have the drawback that many lower aggregation level candidates are discarded in the search space set within which the blind decode limit is reached and entire search spaces may be discarded as well. To avoid this, an alternate approach would be to first allocate blind decodes to all the common search space sets as per the prioritization described above. Then, the remaining candidates can be proportionally distributed among the UE-specific search space sets. Proportional distribution can be done with a simple scaling but there is a risk that some aggregation levels may not have any candidates and that some candidates may be wasted. To avoid this one of the following methods could be used. 
In the following, it is assumed that the number of PDCCH candidates configured for aggregation level 1, 2, 4 and 8 are , , , , respectively, and the number of available blind decodes for the search space set is . The number of PDCCH candidates per aggregation level after reduction is denoted , , , . Pseudo-code is used for each of the possible dropping methods below to describe the sorting algorithm.
1) 			
for 


End

2) Assume , , ,  are sorted non-increasingly into . A pseudo code to describe the algorithm is given below:
 
for  in 
     
     
     
     if 
           
           
	end
if 
           break
end
end
Afterwards, the sorting is reversed and , , ,  assigned from the respective .
3) Set  for all 
while 
// calculate search space priorities
 
// find search space with lowest priority. If multiple search spaces have the same priority, select the one with the lowest aggregation level 
 
// reduce actual number of PDCCH candidates for this search space by one 
 
End
Current hashing function with dropping of candidates due to CCE limitation
Which of the limits is going to be the limiting factor in determining the number of PDCCH candidates that the UE can ultimately attempt decoding for in a slot will depend on the scenario. For instance, if a UE has a limit of 56 CCEs and is configured with a single CORESET in the slot that spans only one OFDM symbol, then the CCE limit should not be an issue since the maximum number of PRBs in a carrier is 275 and this corresponds to less than 56 CCEs. However, if a UE is configured to monitor a two or three symbol CORESET, or multiple CORESETs in a slot and the number of CCEs for all CORESETs is high, the CCE limit could limit the number of PDCCH candidates for which decoding can be attempted since the CCE limit of 56 CCEs has to be shared among the many CORESETs in the slot.
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Figure 1: Blocking performance as the channel estimation limit on the number of CCEs is increased in a CORESET with 60 CCEs, with blind decode candidate assignments of 6/6/4/2 at aggregation levels 1/2/4/8 and with 16 users being simultaneously scheduled.
The figure above shows the blocking performance as a function of the CCE limit for channel estimation for a single CORESET. Sixteen UEs are assumed to have search space sets defined by the LTE EPDCCH hashing function within the same CORESET. The CORESET size is 60 CCEs. Candidate dropping is used to adjust the CCE footprint (the set of CCEs that the PDCCH candidates span) size to the CCE limit. The figure shows the performance for two PDCCH candidate prioritization methods as described in Section 2.1.3.1. As can be seen from the figure, as the CCE limit assigned to the CORESET is reduced, the blocking probability starts to increase significantly. In this case, the difference between a CCE limit of 24 and 36 is significant. In a situation where the UE has to monitor multiple CORESETs in a slot (Case 2 from previous agreements), it is quite possible that a UE may only be able to process 24 CCEs for the CORESET. For instance, if a UE needs to monitor two CORESETs in a slot and supports only a limit of 48 CCEs per slot, one of the CORESETs may only have 24 CCEs of channel estimation capacity. Thus, there is a clear benefit to supporting a high number of CCEs for Case 2.
Observation: The number of CCEs for Case 2 needs to be greater than the CCE limit agreed for Case 1-1 and 1-2 to reduce the risk of increased blocking probability.
Alternatives for hashing functions and handling of candidates when CCE limit is exceeded 
The imposition of the agreed CCE limits in combination with the currently defined hashing function, may impact blocking probability in some scenarios. Modifications to the hashing function to reduce blocking probability have been discussed. 
Options have also been discussed on the handling of PDCCH candidates when the CCE limit is exceeded, with the current assumption being that candidates are dropped until the CCEs to be processed are within the limit. One option is to consider an approach where the remaining PDCCH candidates are rehashed rather than dropped once the CCE limit is reached for a subset of the candidates, so that they do not lead to an increase in the CCEs to be processed.
In the following, the various combinations of hashing functions and handling of remaining candidates that have been evaluated are described. 
LTE EPDCCH hashing with subsequent candidate dropping using method 1. The hashing function is described e.g. in [1]. In short, the PDCCH candidates of a given aggregation level are spread out as evenly as possible in the CORESET. The placement of the candidates between different aggregation levels are uncoordinated. Candidate dropping is based on the first method for prioritization described in section 2.1.3.1.
LTE EPDCCH hashing with subsequent candidate dropping using method 2. This is similar to the above method except that the candidate dropping is based on the second method for prioritization described in section 2.1.3.1.
Random nested hashing with pseudo candidates. For the highest aggregation level, candidates are randomly picked among all possible candidates in the CORESET. For lower aggregation levels, candidates are randomly picked within the footprint of the candidates of the highest aggregation level. To increase the number of CCEs beyond what is implied by the number of candidates at the highest aggregation level, so called pseudo candidates are used to increase the footprint to the CCE limit. These are randomly picked for the highest aggregation level and are included in the footprint of the highest aggregation level but may not be used to transmit PDCCH at that aggregation level. This hashing function, by design hashes all candidates within the CCE limit although a CCE limit per CORESET needs to be assigned.
Sub-band hashing with subsequent candidate dropping. This hashing function is described in [3]. In short, the LTE EPDCCH hashing function is used as a basis to divide the CORESET into sub-bands. Within each sub-band, one candidate is randomly picked. The placement of the candidates between different aggregation levels is uncoordinated. Candidate dropping is based on the second prioritization method described in section 2.1.3.1.
Semi-constrained LTE EPDCCH hashing. The second prioritization method is used to prioritize candidates. That is, starting from the highest aggregation level and proceeding to successively lower aggregation levels, candidates for that aggregation level in all the search space sets within the CORESET are added, one at a time to grow a footprint. The footprint is grown until the CCE limit is reached. For the aggregation levels whose candidates are all added at this point, the PDCCH candidate positions are kept where they are. For the aggregation levels whose candidates are only partially added or not added at all, the PDCCH candidates are rehashed within the CCE footprint, also using the LTE EPDCCH hashing function but on the smaller set of CCEs that constitute the footprint.
Semi-constrained sub-band hashing. Same principle as the semi-constrained LTE EPDCCH hashing is used but the sub-band hashing function proposed in Error! Reference source not found. is used to define the PDCCH candidates instead of the LTE-EPDCCH hashing function.
To cover a wide range of scenarios, the configurations in Table 1 are evaluated:
	
	Scenario 1
	Scenario 2
	Scenario 3

	Number of CCEs in CORESET
	32
	60
	96

	Candidates for AL 1/2/4/8/16
	4/4/2/1/-
	6/6/6/2/-
	8/8/6/6/2

	AL probability distribution per DCI [%]
	[bookmark: _Hlk506566649]10/60/20/20/-
	10/60/20/20/-
	20/30/20/20/10

	Number of multiplexed UEs per CORESET[footnoteRef:2] [2:  Chosen differently for each scenario to get a blocking level approximately in the range of 0.01 to 0.1.] 

	8
	16
	12


[bookmark: _Ref506566581]Table 1. Evaluated scenarios.
In these scenarios, the various hashing functions are evaluated for different levels of the CCE limit. In the figures below the average blocking probability versus the CCE limit is shown.
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[bookmark: _Hlk506510750]Figure 2: Blocking performance as the channel estimation limit on the number of CCEs is increased in scenario 1.
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Figure 3: Blocking performance as the channel estimation limit on the number of CCEs is increased in scenario 2.
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Figure 4: Blocking performance as the channel estimation limit on the number of CCEs is increased in scenario 3.
We make the following observations based on the results. 
Observations: 
· The schemes using candidate dropping experience a significant degradation in blocking performance when the CCE limit is decreased whereas the schemes using pseudo candidates or semi-constrained hashing perform well even with a small number of CCEs
· The LTE EPDCCH hashing function performs worse than the other schemes when the CCE limit is high although the degradation is a more severe problem at lower CCE limits

The hashing function that performs best overall is the semi-constrained sub-band hashing. The procedure for determination of the CCE footprint according to this hashing function may be described using the example in Figure 5Figure 7. The upper part of the Figure 5 shows how the candidates are determined for different aggregation levels without any limitations on the number of CCEs that can be processed for channel estimation. The figure shows that the final CCE footprint including the CCEs corresponding to all the aggregation levels is 40 CCEs. The candidates for each aggregation level and the final CCE footprint (in grey) are shown. 
[image: ]
[bookmark: _Ref506495310]Figure 5: Example of determination of the CCE footprint
In the lower part of the figure, the CCE footprint that is computed when the CCE limit is 24 CCEs is shown. As can be seen, the CCE footprint is determined based on the 2 aggregation level 8 candidates and 2 of the 4 aggregation level 4 candidates. After the CCEs for the second aggregation level 4 candidate, the CCE limit of 24 CCEs is reached. Therefore, all the candidates at aggregation level 4 and lower are re-hashed within the CCE footprint of 24 CCEs shown in grey after step 4 in the lower half of the figure. 
The rehashing within the CCE footprint instead of the entire CORESET is performed by applying the hashing function using virtual indices that are contiguous across the CCEs in the CCE footprint that may be dis-contiguous in the original CORESET. Once the PDCCH candidates are determined within this CCE footprint with virtual indices, the virtual indices are mapped back to the original indices within the CORESET. 
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Figure 6: The virtual indexing used for indexing the CCE footprint within which the rehashing of candidates that cause the CCE limit to be exceeded.
The resulting candidates at all aggregation levels as computed according to the semi-constrained sub-band hashing are shown below in Figure 7.
[image: ]
[bookmark: _Ref506564934]Figure 7: Example of PDCCH determination. The example has a CORESET of 60 CCEs with 6/6/4/2 candidates at aggregation levels 1/2/4/8.
Based on the results above, we propose the following.
Proposal: Support overbooking of CCEs and blind decodes. When the CCE or blind decode limit is exceeded in a certain slot specify PDCCH candidate mapping rules as follows.
· PDCCH candidates are mapped to search-space-sets until the limit is met with the following prioritization rules (1) SS-type order, i.e., CSS before USS (2) higher AL before lower AL in a SS type (3) search space set with lower index before search-space-set for a given AL
· If the CCE limit is reached when mapping candidates of aggregation level L, candidates for aggregation levels L and below are hashed (candidates of aggregation level L that have already been processed need to be re-hashed) within the footprint of the already assigned CCEs in the CORESET.
A text proposal based on the above is provided in [5].

Proposal:  Consider modifying the hashing function to the sub-band hashing function described below.
· The LTE EPDCCH hashing function is used as a basis to divide the CORESET into sub-bands. Within each sub-band, one candidate is randomly picked. The placement of the candidates between different aggregation levels is uncoordinated. 

[bookmark: _Ref506563599][bookmark: _Ref510806267]PDCCH candidate prioritization
Various candidate prioritization methods have been discussed in past meetings and are summarized below. If candidates are to be dropped, they are dropped in increasing order of the priority value.
· For the method discussed in [3], each PDCCH candidate is given a priority m/ML, where m is the candidate index within an aggregation level and ML is the number of candidates of a given aggregation level L. If two candidates have the same metric, then the one with the higher aggregation level has higher priority. 
· For the method in [4], candidate(s) are prioritized based on the number of CCEs that will be reduced from the pool for channel estimation, if the candidate were to be dropped. In the case that multiple candidates with same metric are identified, their index in the search space may dictate their precedence.
· Another method discussed was to prioritize candidates first according to the search space type (CSS > USS), search space set number within a search space type (lower numbers have higher priority) and aggregation level within a search space set (higher aggregation levels have higher priority). 

A closer analysis of the first two prioritization methods above reveals that the scheme proposed in [3] gives a good prioritization between candidates of different aggregation levels since it tends to keep the balance between candidates of different aggregation levels. On the other hand, among the candidates of an aggregation level its prioritization is arbitrary. Consequently, candidates are sometimes dropped that do not reduce the footprint since they fully overlap with another candidate. Therefore, more candidates than necessary are dropped.
On the other hand, the principle proposed in [4] gives a sound prioritization among the candidates within a given aggregation level. Unfortunately, it tends to drop candidates of higher aggregation levels first, often resulting in a shortage of high level candidates with increased blocking consequently.
In our evaluations, we consider the following prioritization methods.
[bookmark: _Hlk510619843]Method 1) Prioritize candidates first according to the search space type (CSS > USS), then according to search space set number within a search space type (lower numbers have higher priority) and finally according to aggregation level within a search space set (higher aggregation levels have higher priority). Candidates are added one by one, starting from the candidates of the highest aggregation level and proceeding to lower. Any candidate that would make the CCE footprint size exceed the CCE limit is dropped. This procedure continues until all candidates at all aggregation levels have been considered.
Method 2) A hybrid prioritization method based on the first two methods listed above which works as follows:
· Priority values are defined per search space as , where  is the configured number of candidates of the search space and  is the remaining number of candidates of the search space (this is equivalent to the priority value defined in [3] for the candidate of lowest priority of the remaining candidates in the search space). These priority values are used to select a search space (aggregation level) within a search space set. 
· Within the candidates of an aggregation level, candidates are prioritized according to the number of CCEs by which the footprint would be reduced if the candidate were to be dropped. 
· If a candidate is dropped from a search space,  of that search space is reduced by 1.

When multiple carriers are configured to the UE for carrier aggregation, the blind decode and CCE limits have not been fully defined. It has been agreed that the limits will depend on the number of carriers when four or less carriers are configured and that for greater than four carriers, the limits will depend on an explicit UE capability. We propose the following in this regard.
Proposal:
The blind decode and CCE processing limits for N carriers that are carrier-aggregated are N times the corresponding limits for a single carrier when N < 5.

DCI formats for USS
The association of C-RNTI, CS-RNTI, TC-RNTI, and SP-CSI-RNTI in a UE-specific search space was left for further study. We propose the following.
Proposal: In a UE-specific search space, the UE monitors 
· DCI formats 0_0, 1_0, 0_1 and 1_1 scrambled with C-RNTI and CS-RNTI (if configured) 
· DCI formats 0_1 scrambled by SP-CSI-RNTI (if configured). 


Conclusion
This contribution discussed some remaining issues on search spaces and proposed the following.
Proposal: Support overbooking of CCEs and blind decodes. When the CCE or blind decode limit is exceeded in a certain slot specify PDCCH candidate mapping rules as follows.
· PDCCH candidates are mapped to search-space-sets until the limit is met with the following prioritization rules (1) SS-type order, i.e., CSS before USS (2) higher AL before lower AL in a SS type (3) search space set with lower index before search-space-set for a given AL
· If the CCE limit is reached when mapping candidates of aggregation level L, candidates for aggregation levels L and below are hashed (candidates of aggregation level L that have already been processed need to be re-hashed) within the footprint of the already assigned CCEs in the CORESET.

Proposal:  Consider modifying the hashing function to the sub-band hashing function described below.
· The LTE EPDCCH hashing function is used as a basis to divide the CORESET into sub-bands. Within each sub-band, one candidate is randomly picked. The placement of the candidates between different aggregation levels is uncoordinated. 

Proposal:
The blind decode and CCE processing limits for N carriers that are carrier-aggregated are N times the corresponding limits for a single carrier when N < 5.

Proposal: In a UE-specific search space, the UE monitors 
· DCI formats 0_0, 1_0, 0_1 and 1_1 scrambled with C-RNTI and CS-RNTI (if configured)
· DCI formats 0_1 scrambled by SP-CSI-RNTI (if configured). 
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