
[bookmark: _Hlk501533314][bookmark: _GoBack]3GPP TSG-RAN1 #92	R1-1802767
Athens, Greece, February 26 – March 2, 2018

Source:	Ericsson
[bookmark: Title][bookmark: OLE_LINK5]Title:	Signature Design for NoMA
[bookmark: Source]Agenda Item:	7.4.1
[bookmark: DocumentFor]Document for:	Discussion

[bookmark: _Ref502226865]Introduction
In this contribution, we discuss some physical layer aspects of non-orthogonal multiple access (NOMA), we present new NOMA schemes and evaluate them for the NR uplink. 
NOMA design
In NOMA, each UE spreads its QAM information symbols using an N-length spreading sequence . Let  denote the number of simultaneously active UEs. For a single antenna BS, the received signal vector, where N is the number of REs spanned by the signature vectors and carry the same QAM information symbols, at the eNB can be written as 

where  is the channel vector between UEk and the gNB,  is the QAM symbol of UEk and the operator  stands for the pointwise multiplication/product of two vectors. For multiple RX antennas, we can form the received signal corresponding to a single QAM symbol per UE, simply by concatenating the N-length received vector  from each RX antenna. From a system performance point-of-view, it is optimal to jointly choose the transmit strategies for all UEs and then employ a joint MUD detector. Typically, the QAM symbols are spread using sequences that are designed to have certain desired correlation properties. The differences between various schemes lie in how the sequences  are constructed. 
Orthogonal UE multiplexing
A simple way to multiplex UEs is shown in Figure 1a. On top, we see the conventional OFDMA which is PRB-based allocation method. In the bottom we have the same amount of resources per UE (12 REs/UE); here the notion of the PRB in frequency has vanished, yet the UEs are orthogonal on the RE level. We can view this multiplexing as a 24-length block vector, whose non-zero elements determine where each UE transmits. The block vectors for UE1 and UE2 are  for the upper part of Figure 1a, and , for the bottom part. The block vector-based allocation, is based on allocation on RE level, rather than the PRB level, which is the common frequency allocation in LTE and NR.
In Figure 1b, we have UEs and  available PRBs for data transmission. Four PRBs can be viewed as a single block of 48 REs and we employ the RE occupancy pattern. So using sub-PRB allocation it is possible to fit multiple UEs into given resources, which is useful for small packets in dense deployments. Moreover, it can serve high-reliability cases, due to absence of collision among UEs’ data and DMRS.
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[bookmark: _Ref476643854]Figure 1: a) PRB-based (upper part) and RE-based (lower part) orthogonal resource allocation in frequency; and b) UE-to-PRB assignment in PRB-based allocation (left) and UE-to-RE assignment in sub-PRB based allocation (right).  
Spreading sequences achieving the Welch Bound 

In the orthogonal multiplexing methods that were presented in the last section multiple UEs are multiplexed onto the same PRBs, yet on orthogonally assigned RES, without the need for advanced detector and without pilot contamination on the DMRS sequences. Since it is orthogonal, the total UE sum-rate is not impacted by the multiplexing scheme. In some cases, where higher capacity is sought, we need to use non-orthogonal multiple access (NOMA), i.e., overlapping transmission over the same REs. 
Assume a generic vector representation of a multi-user system as

where  is a diagonal matrix with the elements of the vector  on its main diagonal. The design metric, that we chose, for the signature vectors is the total squared cross-correlation . The spreading sequences that we use, are designed to meet with equality the Welch-bound  (WBE), which is a lower bound on the total squared cross-correlation of our vector set, such that always holds. There are known methods to iteratively construct such codes for arbitrary N, K. Further details are provided in the section 2.3.
After spreading the QAM symbols, we obtain a matrix structure as in Figure 2, which depends on how we choose to perform the spreading. The reason for choosing WSMA sequences is that they are capacity-optimal [1], hence they are excellent candidates for achieving high spectral efficiency (eMBB) and high UE capacity (mMTC).
Herein, one faces again the trade-off of low-complexity MUD; the best detector, namely the soft-MAP detector has exponential complexity in the number of UEs and constellation cardinality whereas linear detectors are less demanding yet demonstrate inferior performance compared to joint MAP. In WSMA, detection is performed using the Ordered MMSE-SIC where we have an iterative process:
· At each step, we construct the MMSE filter of the active (non-decoded) streams. These are ordered based on the post-processing SINR and the strongest stream is decoded. The estimated symbol is subtracted from the received signal and the process is iterated until all estimates are obtained.
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[bookmark: _Ref502230986]Figure 2: NOMA spreading for multiplexing 6 UEs over 4 REs. On the left part, 6 UEs are multiplexed with spreading vectors of length 4. On the right part, the 6 UEs are split into two non-overlapping groups of 3 UEs each and the intra-group UEs are multiplexed using spreading vectors of length 2.

General description of the Welch Bound Sequences

The description provided here is for the complex valued variables (denoted as ), unless explicitly mentioned. Though the Signature Sequence (SS) construction criteria in real values variables (denoted as ) remains the same as the counter parts in , the conditions under which each attains a certain optimality may be different. Since the term WSMA sequences encompasses various Welch sequences (see Figure 3), each forming a subset with its own properties, the focus will be on the Welch Bound Equality (WBE) sequences in the sections to follow. It must be noted that the time domain assumed here for the SS can be equivalently addressed in any other domain such as frequency. 

There are  single antenna users, each with one symbol to transmit, communicating with a single antenna receiver. Each user has a single symbol to transmit. This symbol modulates a temporal codeword (CW) vector, called a signature sequence (SS), before transmitting the vector as  time slots, i.e., the symbol is spread (or repeated) over  time slots. Also, the terms SS and CW are used with the same meaning here. Since all the users access a common channel over the same  time slots, there is interference among them. This interference arising due to the Multiple Access (MA) is called Multiple Access Interference (MAI). This MA communication may be viewed as a network (NW) with  Degrees of Freedom (DoF) trying to serve   users, each with a required Quality of Service (QoS). So the design of the SS is that each CW is placed at an optimal distance (or angle) from each other in the vector space. When , there can always be a collision free transmission from all the users, since there can be at least one non-overlapping DoF dedicated for each user. This leads to an interference free transmission and such a MA transmission scheme is called Orthogonal Multiple Access (OMA). With OMA there is a performance loss, which is quite visible when each user has a QoS. The system capacity (SC) is also not optimal. OMA is not possible when the system is overloaded, i.e., when . So the SS vectors must be carefully adjusted to allow controlled interference among the users such that the PIs are optimized. Since the SS vectors are no longer orthogonal, the MA scheme is known as Non-Orthogonal Multiple Access (NOMA).

Total Squared Correlation

The SS for each of the  users must be designed in such a manner that the overall Mean Squared Error (MSE) is minimized. Choosing other Performance Indicator (PI) such as the Signal to Interference puls Noise Ratio (SINR) or the SC, both of which need to be maximized, is also a possibility while considering the SS design. Fortunately for an overloaded system, under certain design conditions, optimizing one PI leads to optimizing the other two PIs. To understand this, another PI called Total Squared Correlation (TSC) is introduced here which is directly related to the previously mentioned three PIs. The SS is designed by optimizing (or minimizing) the TSC for the NW optimality, in the SC sense and also in the overall MSE sense simultaneously. And there is a well defined Lower Bound (LB) for the TSC, which is outlined in the next sections.

The system model is reintroduced here for clarity. For a user , let  be the transmitted symbol that modulates a unit norm SS vector . The Additive White Gaussian Noise (AWGN) signal model may be given as , where  is the zero-mean AWGN vector with a covariance matrix , i.e., an Identity matrix. the overall SS matrix with a CW in each of its columns is , the transmit symbol vector is .  The transmit power of each user is set to unity, so the power control problem is not addressed here. A unit norm temporal receive filter , such as a Matched Filter (MF) or a linear Minimum Mean Squared Error (MMSE) filter, may be employed by the receiver to obtain an estimate  for the transmitted symbol . The post processed SINR  of a user  is given as



where  is the trace operator,  is the noise component in the SINR . The  term in the denominator is the TSC, which also contains the desired unit signal power. So an additional unity term arises in the denominator. If the post processed noise is white, i.e., the noise power of each  is the same, then the TSC can directly be used as a PI. 

Welch Bound

A LB known as Welch Bound (WB) is defined for the TSC. For overloaded systems it is given as  TSC and for the underloaded systems it is  TSC. To meet the optimality conditions in the mentioned PIs, the bound must be satisfied by equality. In such a case, the obtained SS is called a Welch Bound Equality (WBE) SS. 

Iterative sequence generation

For the construction of the WBE SS, well known Interference Avoidance (IA) techniques exist [4]. A nice property of the IA methods is that the SS can be obtained iteratively in a sequential and distributed manner. It is guaranteed that the iterations converge, since there exists a fixed-point for  that is optimum. Though verifying if the obtained optimum is local or global is not easy. By optimum it is meant that the entire matrix  converges as an ensemble (as against each CW convergence), with the considered PI reaching the required tolerance. Hence the converged WBE CWs are not unique. At convergence, all the mentioned PIs are optimized. This makes the selection of the WBE SS for NOMA attractive.

From the center part of the SINR equation, let , which is the correlation matrix of the interference plus noise. It can be identified that minimizing the denominator (or equivalently maximizing ) is a well known Rayleigh-Quotient problem. From this, the Eigen vector corresponding to the minimum Eigen value of  may be considered as CW for UE , if it is assumed that  is matched to . 

The fixed-point iterations start from the users choosing a random CW. In a given sequential user order, say , each user updates its SS  by solving the Eigen value problem while other SS,  are kept fixed. After user , the next user updates it’s CW in the same way by assuming the other CWs to be fixed. The iterations progress up to the final user in the order, such that in each iteration there are  updates, one for each CW in . After the final update in the given iteration, the first user in the order restarts the updates. This repeats until convergence.

Again, from the center part of the SINR equation, the solution to  can also be identified as the well known Generalized Eigen Value Problem (GEVP), i.e., finding a common Eigen value for the matrix pair (). The solution to which is the linear MMSE vector given as , in its normalized form. Sequential iterations as mentioned before can be used, except that instead of solving the Eigen value problem, the normalized linear MMSE expression is used during updates. For this SINR maximization problem (or TSC minimization), the obtained solution to  from both the MMSE IA iterations and the Eigen vector IA iterations is the same fixed-point. 

A Kronecker product based approach may be employed to obtained (or construct) higher dimensional WBE SS, i.e., higher  values, from lower dimensional WBE SS.

Equiangular subset of WBE sequences

If the WB on the performance indicator TSC is satisfied with equality, then the set of obtained SS vectors are optimum in the overall MSE sense (and also in the capacity sense). These are the WBE sequences. TSC captures the total permissible interference for each of the  active users in an overloaded system (). Any change to any of SS vectors will change the TSC and hence every user’s SINR also changes. The SS design while optimizing the overall MSE can be viewed as a two-stage procedure, 1) construction and 2) selection. This separation into two will be evident next.

In general,  may vary in the NW. Each time a user drops out or a new UE is admitted, the existing set of WBE SS are no longer valid for that given instance. Since, a change in  will change the TSC and hence the SINR at each user. This implies reconstruction of the WBE SS by obtaining the new correlation values (which correspond to the MAI) among the SS vectors for the new set of active users. So, it is reasonable to consider another design criterion, i.e., constraint the WBE SS vectors, such that the SS vector of each user is at the same angle (equiangular or same correlation) from every other user’s SS vector and select an appropriate PI that captures this constraint. With such a requirement, the TSC and hence the SINR may be easily evaluated. The increase or decrease in the MAI at each user is already known, since the correlation value is known at the construction stage and the SS vectors have a unit norm. This is the Interference Invariance property of the SS. For a given  and , the SS vectors are constructed only once. Large  may be assumed in the initial construction, so that any user that joins can only select (or obtain) its SS vector from the already evaluated SS vectors. Two-stage problem at each instance is then reduced to a single-stage selection problem.

To address this WBE SS with equiangular property, a PI known as the worst-case coherence of the signature matrix, given as the  , is suitable. A LB on  is once again identified by the WB and is given as . If this bound is met with equality, then WBE SS with equiangular property is obtained. These newly obtained SS vectors are a subset of the WBE sequences obtained while minimizing the TSC. To meet the LB with equality, the optimization problem must minimize , the outcome of which is a SS for which the correlation between any two vectors is the same. Such equiangular WBE SS is known as Grassmannian SS or Equiangular Tight Frames (ETF) [2].  It must be emphasized that the existence of an ETF is not guaranteed for any random combination of  and . 

Proposal 1: WBE sequences with equiangular property are chosen for NOMA, especially when the number of UEs is varying.

For Proposal 1, the chosen PI while evaluating the ETFs, is the worst-case matrix coherence  instead of the TSC. From the hardware point of view where the number of Radio Frequency (RF) chains in mostly limited to one at the users, it is preferable to choose a subset of ETFs called Harmonic ETFs. These SS vectors are relatively easy to generate. In addition to having a unit vector norm, each element in each vector will also have a unit magnitude. Such a SS is constructed from the complex roots of unity.  Figure.3 shows various subsets of WB sequences that were outlined in this subsection. 




Figure 3. Various subsets of Welch Bound sequences are shown. The more inner the subset is, the more constrained it is.
An extension to the WBE sequences in multidimension
Multiple symbol transmission 
When the UEs transmit more than one symbol, say  (with ) symbols per user, then the users will have more than one SS vector for itself, resulting in an ( x) SS matrix. This SS matrix will then multiplex the symbols at each UE before spreading them onto the  time slots. Since the concept of ETFs is already outlined before, an extension to this is outlined here in the context of multiple symbols. 

For multi symbol transmission, the function of the SS matrix at each UE may be that of multiplexing the  symbols. A simple design criterion could be to implement orthogonality at each UE while multiplexing the  symbols and permitting a controlled interference across the UEs as before. This problem is well understood in the context of subspace packing, wheresubspaces, each of which is  dimension of , need to be packed together [3]. For a user  , the SS matrix  could contain the  basis of its subspace to satisfy the orthogonality. By introducing the controlled interference among the users, the subspaces are allowed to overlap such that the principal angle between any two subspaces is the same. It is analogous to the equiangular criterion when . When , there can always be orthogonal columns across all  users such that the user subspaces are non-overlapping. 

Such a packing problem also provides the Upper Bounds (UB) on the admissible number of UEs under some design criteria (like equidistant or equiangular). For equiangular subspaces criteria it is given as  [3].

Proposal 2: WBE sequences with multiplexing are chosen for NOMA, especially when the UEs are in different dimensional subspaces and wish to transmit multiple symbols.

Multiple antennas
Since most of the systems are equipped with multiple antennas, it is important to understand the temporal SS design criteria w.r.t. the spatial dimension. Let the receiver have  antennas while each user is equipped with  antennas, but each user transmits only one symbol.

The received (and sampled) temporal signal vector (in a row form) at a receive antenna  from all the  users is  


where for a user , the spatial channel from all its transmit antennas to the receive antenna  is , the unit norm spatial BF vector is , the transmit power is  (it is assumed to be unity here), and the transmitted symbol is . For a spatially flat (x ) MIMO channel  of user  at a given time instance,  denotes all the elements in its row . The temporally uncorrelated white noise for all the users at the receive antenna  is .  Each UE must now adapt (by reselecting a SS) to optimize its Space Time (ST) block code matrix (under the assumption that the spatial transmit/receive filters are fixed) to minimize the overall MSE. An observation from the received symbol  is that with the inclusion of the spatial domain, the required correlation to satisfy the WBE by the temporal SS vectors is perturbed at each UE. This is because the overall effective ST channel of each user is changed. Also, the overall MSE is affected by the transmit strategy of each user and receive strategies across both the spatial and temporal domains.

Observation : WBE sequence design in the temporal domain that consider jointly the spatial transmitter and/or spatial receiver strategy improves performance for NOMA, when there are multiple antennas are involved.

A transmitter and/or receiver strategy here is applicable to both spatial and temporal domains.
Simulations


In this section we show as an example the sum-rate performance of the NOMA scheme that was presented in section 2.
	Parameters
	Values or assumptions

	Carrier Frequency
	2 GHz

	Waveform 
	OFDM 

	Numerology
	15KHz

	Channel coding
	LTE Turbo-codes, 24 bits CRC

	Modulation
	QPSK, 16/64-QAM

	BS antenna configuration
	2/4 Rx baseline 

	UE antenna configuration
	1Tx 

	Power Control
	Equal long-term SNR (small variations remain).

	Channel estimation
	Realistic CE (MMSE)

	Power budget / UE
	12 subcarriers

	Transmission Time
	2 slots (144 data OFDM symbols + 14 overhead)

	Transmission Bandwidth
	4 PRBs

	NOMA Receiver
	Ordered MMSE-SIC



In Figure 3, we evaluate WSMA2 and WSMA4 under different MCS. In this simulation, WSMA2 is superior to WSMA4, in terms of sum-rate performance, under the same MCS. However, when we have four receive antennas we can allow WSMA4 to use higher order modulation, such as 16-QAM. In that case, it outperforms WSMA2 that uses QPSK. It has to be noted here, that the reason that WSMA2 is not tested under 16-QAM is because this action would increase its complexity order from  (for QPSK) to , which is an undesirable effect. However, HOM does not have the same impact on complexity when it comes to the MMSE receiver. The reason is that the soft-value calculation (which is fed into the channel decoder) for the UEs is decoupled and performed individually for each UE. It is also worth noting here that, 4RX antennas with WSMA2 would only yield power gain (assuming QPSK), which would simply change the cross-over SNR point between the two WSMA schemes. We can infer that if 16/64-QAM are supported, then MMSE-based NOMA can be advantageous because:
i. Its performance degradation, compared to the optimal soft-MAP receiver is marginal, at least for the case of 2RX antennas.
ii. Its complexity does not become prohibitive as the constellation cardinality grows. For this reason, we can exploit multiple RX antennas and favourable channel conditions to achieve as high-rate as possible.
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[bookmark: _Ref478387251]Figure 4: Sum-rate performance comparison between WSMA2 and WSMA4 with QPSK and 16-QAM, for a system with TDLC (300nsec, 3km/hr) channel model, and realistic CSI.	

Conclusions
In this contribution we presented a NoMA signature design based on Welch bound equality and made the following proposals:
Proposal 1: WBE sequences with equiangular property are chosen for NOMA, especially when the number of UEs is varying.
Proposal 2: WBE sequences with multiplexing are chosen for NOMA, especially when the UEs are in different dimensional subspaces and wish to transmit multiple symbols. 
Observation:  WBE sequence design in the temporal domain that consider jointly the spatial transmitter and/or spatial receiver strategy improves performance for NOMA, when there are multiple antennas are involved.
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