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In RAN #76 meeting, a revision of study on 5G Non-Orthogonal Multiple Access (NOMA) was approved [1], in which receivers for NOMA is listed as one of the study objectives:
1.2 Receivers for non-orthogonal multiple access: [RAN1, RAN4] 
· MMSE receiver, successive/parallel interference cancellation (SIC/PIC) receiver, joint detection (JD) type receiver, combination of SIC and JD receiver, or other receivers.
· The study should consider performance, receiver complexity, etc.
In this contribution, major types of multi-user receivers for NOMA are discussed, and some receiver implementations based on MMSE-SIC are presented.

Major types of multi-user receivers
Multi-user receivers can have many kinds. In this section we discuss three typical types of advanced receivers for NOMA. These three can be considered as the basic, each having its unique characteristics, suitable for certain transmit side processing. Hybrid implementation is possible by mixing the basic flavors of the three. Note that in NOMA study for uplink, normally only one transmit antenna is assumed, e.g., no multi-spatial-layer transmission.
Hard IC receiver
Hard IC receiver is a typical code-word level interference cancellation (IC) receiver, where the IC is done by reconstructing a user’s signal from the decoded bits. Hard IC receiver family includes successive IC (SIC) receiver, hybrid IC (HIC) receiver, and parallel IC (PIC) receiver, depending on whether the process of decoding and IC is carried out successively or in parallel, or both. The advantage of hard IC receiver is that once the information bits of a user are decoded correctly, the interference caused by the user can be canceled (almost completely if channel estimation is precise), and the user can be removed out from the SIC chain, resulting in reduced complexity. And further, SINR sorting can be performed to accelerate SIC and improve the performance by taking advantage of near-far effect among users.
In a more general sense, the task of separating different users’ data is quite evenly distributed between demodulator (MMSE de-spreading is a form of generic demodulation) and the channel decoder in hard IC type of receiver. The relatively low correlation between spreading sequences reduces the interference between users. Hence, the hard decision of channel decoder is typically enough, no need for iterations between MMSE de-spreading and soft-input-soft-output (SISO) decoder.
Fig. 1 shows a basic procedure of MMSE-SIC receiver [2], where MMSE equalization and channel decoding are carried out for all streams one by one, with the interference of decoded streams being subtracted successively. When the spreading is used in the transmitter side, joint equalization and de-spreading can be implemented in the “MMSE receiver”, which can optionally be replaced by much simpler matched-filter (MF) receiver if long spreading code and/or more Rx antennas are introduced. 
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Figure 1 Basic MMSE-SIC receiver
Assuming K UEs transmitting in a non-orthogonal manner, each UE transmitting symbols by using a spreading code of length L and base station having N receive antennas, the received signal can be expressed by:

                                                                                  (1)


where, y is a received symbol vector with size of LN*1 for a modulation symbol, xk is a modulation symbol transmitted by user k,  is the equivalent channel of user k taking the channel coefficients on L resource elements from each Rx antenna hn,k and the spreading code ck of length L into account. Here hn,k and ck are vectors of size 1*L. Dot product is applied between hn,k and ck .  is the transpose operation, so Fk is a vector with size of LN*1, and n is the additive white Gaussian noise (AWGN) with variance σ2.
Then we can calculate the detection weight for user k with linear MMSE principle by:

                                  (2)


where R is the covariance matrix of the received signal,  is the covariance matrix of interference and noise to user k, ILN is an identity matrix of size of LR*LR,  is the conjugate transpose.

With this weight we can derive the SINRk by equation (3) and the detected symbol  by equation (4). And it should be noted that with some deductions the SINRk can also be calculated by using R-1 to reduce the calculation of matrix inversion.

                                                                                   (3)

                                                                                                   (4)
In traditional MMSE-SIC receiver, the complexity is mainly on matrix inversion in MMSE detection, with the complexity order being O(x3), where x represents the matrix dimension. If the receiver carries out MMSE detection per each modulation symbol for all S symbols in a code block, the complexity order would be O(K*S*(N*L)3), linearly growing with the number of UEs. Multiple ways can be used to reduce the number of matrix inversion or the dimension of matrix inversion, or even avoid direct inversion of matrix, which is to be discussed in Section 3.2. In addition, as mentioned above, MF receiver could be considered if N and/or L are large, which has low complexity and could also achieve a good performance.
Soft IC receiver
Elementary signal estimator (ESE) is one kind of iterative detector where soft-input soft-output (SISO) decoder is applied. When the process converges, the soft information after channel decoding has higher reliability than the soft information before decoding. The updated soft information is applied in the calculation for the mean and variance of the interference which is carried out in ESE [3]. Then the new soft information is input to the decoder to be refined. After several iterative detections, user signals can be successfully decoded.
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Figure 2 ESE based receiver
Fig. 2 shows the ESE based receiver where user-specific bit interleaver πk is employed to randomize the interference to facilitate the iterative detection. In some cases, the interleaver can be replaced with a scrambler to have a simpler implementation. Assuming K users are transmitting on the same resources, the received signal for k-th user on j-th chip can be expressed by:

                                               (5)




where , k is the index of user,  and j is the index of the chip. is the channel coefficient of user k and  is the AWGN with variance . ESE algorithm description is given below. 

Initialization: Set  
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For the ESE based receiver, the burden of separating different users’ data lies more on the channel decoder, e.g., SISO decoder with multiple iterations with ESE, whereas the demodulator (ESE) is relatively simple. Since SISO is used in the iteration, the impact of realistic channel estimation should be carefully investigated, especially on the weak user.
Joint detection receiver
Multi-user joint detection can be considered for NOMA receiver. Currently in some NOMA schemes with sparse resource mapping pattern, multi-user joint detection based receiver are applied, e.g. message passing algorithm (MPA) or expectation propagation algorithm (EPA) receiver. The task of separating users’ data is evenly distributed between the MPA/EPA and channel decoder. Although SISO decoder is used here, similar to the case of ESE, MPA/EPA is a more powerful multi-user detector than ESE. Hence the burden does not too lean on SISO decoder, e.g, less number of iterations between MPA/EPA and SISO decoder may be needed. MPA/EPA also has the capability of detecting the signals with multi-dimensional modulation, which would be difficult for MMSE equalizer/de-spreader and ESE detector.
In this type of receiver, multiple users and their occupied subcarriers can be represented by a factor graph G(J, K), where J is the number of multiplexed users and K is the number of subcarriers. The received signal per subcarrier can be expressed as:

                                                                  (10)
where yk is the received signal on the kth subcarrier, xj is the transmitted signal by the jth user, and hkj represents the channel between user j and subcarrier k. An typical example of J=6 and K=4 is shown in Fig.3, where transmitted symbol per user is denoted by x1, ..., x6 and the received signal per subcarrier is denoted by y1, ..., y4.
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Figure 3 Factor graph of a typical G(6, 4) mapping



The joint detection is carried out on symbol level for all users in parallel. The well-known optimal detector is the maximum a posteriori probability (MAP) receiver which maximizes the a posteriori probability of a symbol using the following formula. In the formula, the estimated codeword transmitted by the jth users (denoted by ) is obtained by marginalizing the conditional probability of yk given all xi. Apparently, direct computation of  has a prohibitively high complexity, where exhaustive search over all combinations of related users’ codebook (denoted by ) is needed.

                                            (11)
· MPA receiver


A generic message-passing algorithm (MPA), the sum-product algorithm operating in a factor graph, can be used to find  in an iterative manner. During  inner iterations, connected users and subcarriers exchange messages, where message is the probability of a given codeword for a given user.
At a given user, the probability of a given codeword is received from all neighboring subcarriers. The user calculates the product of received probabilities (except the one from the target subcarrier mentioned hereafter), and sends the normalized probability to a target subcarrier.


At a given subcarrier, the probability of a given codeword transmitted by a given user is calculated by the probability received from all other neighboring users. As shown in MAP receiver principle, the exponential complexity is reflected by marginalizing out the random vector  except . The resultant probability of a given codeword is sent to the given user.


Upon the completion of  inner iterations, a codeword transmitted by a given user is chosen with the maximum probability. After all codewords in a data block are determined, a decoder is used to verify the data block. If outer iteration is enabled (i.e., ), the soft output of decoder will be used to reconstruct a soft input as the a prior information.
To reduce the number of multiplications, the product of probability can be replaced by sum of (LLR. As a side effect, accuracy loss is inevitable due to appropriate approximation needed for logarithm and exponentiation calculations.
· EPA receiver

To further reduce the receiver complexity, a message-passing algorithm via expectation and variance (EPA) has been investigated. As the name goes, during  inner iterations, message exchanged between connected users and subcarriers is just the mean and variance, rather than probability density.
For a given user, the probability of a given codeword is received from all neighboring subcarriers. It calculates the product of received probabilities (except the one from the target subcarrier mentioned hereafter), and obtains the normalized probability of each codeword. Using the normalized probability of all codewords, mean and variance of the transmitted signal of the given user is calculated and sent to a target subcarrier. The key assumption of EPA is that the transmitted signal of the given user follows Gaussian distribution.
At a given subcarrier, the mean and variance of a given user is calculated by the following formula, where independent Gaussian distribution of each user’s transmitted signal is assumed.

                                                               (12)

                                                           (13)


At the given subcarrier, using the calculated  and , the probability of a given codeword transmitted by the jth user is calculated using Gaussian distribution directly and sent to the given user. Apparently, the marginal probability calculation at the subcarrier side is replaced by obtaining a probability using Gaussian distribution formula. The exponential complexity related to marginalization is therefore reduced to linear complexity.


Similar to MPA, after completion of  inner iterations, a codeword transmitted by a given user is chosen with the maximum probability. After all codewords in a data block are determined, a decoder is used to verify the data block. If outer iteration is enabled (i.e., ), the soft output of decoder will be used to rebuild a soft input as the a prior information.





Considering only multiplication involved in K subcarriers’ calculation, MPA receiver has a complexity of , where  is the number of connected users on each subcarrier (e.g. in Fig. 3), M is the number of possible constellation points. Apparently,  is proportional to the user number J, which means the complexity of MPA receiver grows exponentially with the increment of user number. The number constellation points  points, as the base of power, is also an important factor in complexity.



With an assumption of Gaussian distribution, EPA receiver has a complexity of , where exponent  in MPA receiver has been removed. However, the assumption of continuous Gaussian distribution brings inaccuracy in  estimation, since the distribution of codeword on any user is a discrete uniform distribution instead and may not follow Gaussian distribution closely. The impact of this approximation should be well studied, especially for high order modulation.
Furthermore, joint detection receiver processes all users in parallel (i.e., no sorting based on received SNR), which may not fully exploit the benefit of near-far effect. The decoding of weaker users may fail due to strong interference, where even a larger number of iterations may not help much.
Observation 1: Hard IC receiver can balance the burden on demodulator and channel decoder, without iterative soft information exchange in between.
Receiver implementations based on MMSE-SIC
MMSE-SIC receiver shown in Section 2.1 is just a “text-book” like classic version which is seldom used in practical systems. In the following, more practical and robust MMSE-SIC implementations are discussed. Section 3.1 addresses a general enhancement for MMSE-SIC receiver which can be applied to various situations. These enhancements, although slightly increasing the complexity, make MMSE-SIC more robust to various fading and near-far environments. Then in Section 3.2, some methods are described which can significantly reduce the computation complexity of matrix inversion for MMSE. These can be generally applied to MMSE-SIC based schemes. 
NOMA operation can have DMRS/preamble, or without DMRS. In Section 3.3, receiver implementation for DMRS/ preamble based design is discussed. In Section 3.4, the NOMA receiver operates in more “blind” fashion, without any priori information from DMRS/preamble detection. In both these two designs, random collision of sequences is allowed so that NOMA can operate in “true” grant-free settings.
Enhancements for MMSE-SIC
· Enhanced MMSE-SIC
Fig. 4 shows the procedure of a MMSE-SIC receiver, which is traditional or classic. In this implementation, the SIC process would be terminated if a UE is not decoded correctly. This kind of MMSE-SIC receiver would not perform best for NOMA with the following reasons. When sorting the users, average SINR is often used which is over multiple subcarriers or subframes. For frequency-selective or time-varying channel, from the long-term perspective, UEs with higher average SINR have more chance to be decoded successfully than UEs with lower average SINR. However in short term, there is a possibility that UE with slightly lower average SINR can be successfully decoded, whereas a UE with slightly higher average SINR cannot. Hence, average SINR of a UE over its transmission resources cannot fully predict at each time whether the UE would pass the decoding, which may cause premature termination of SIC process when the user of higher (average) SINR is not decoded correctly. 
Therefore, as shown in Fig. 5, an enhanced MMSE-SIC receiver can be considered where the decoding of UE with the next highest SINR would be performed, instead of terminating the SIC process, when the decoding of UE with the highest SINR fails in the first time. Since there is no need to update the matrix inversion, the complexity is only slightly increased, yet with significant performance improvement, especially for higher user loading as shown in Fig. 6. From the figure it is observed that ~1 dB and ~2.5dB improvement at BLER = 10% can be achieved for the cases with 16 UEs and 20 UEs respectively. The simulation assumptions are listed in Table A1 in the Appendix.

[image: ]
Figure 4 A classic MMSE-SIC receiver                                        Figure 5 An enhanced MMSE-SIC receiver
There would be many ways to enhance MMSE-SIC implementation, regarding whether and how to sort UEs, whether to terminate the receiver process when a UE is not decoded correctly, and whether to have a second chance for UEs that are not decoded correctly, etc. Based on the enhanced MMSE-SIC receiver discussed above, we propose to consider the version in Fig. 5 to streamline the various implementations and ease the simulation results comparison/complexity analysis.
[image: ]
Figure 6 Performance comparison between classic MMSE-SIC and enhanced MMSE-SIC
· Data-aided channel estimation refinement
Error propagation is crucial for MMSE-SIC receiver, i.e. the imperfect channel estimation would lead to imperfect interference cancellation, and the residual signal of the high power UE can pose strong interference to the weak power UEs. To alleviate this problem, the data of successfully decoded users can be utilized to refine channel estimation, as follows.

Assuming that the first user has been correctly decoded, and let  be the reconstruction of the transmitted spread symbols of the first user, the channel estimation can be refined by using Least Squares (LS) algorithm:

                                                                        (14)


where  is the received signal on the specific spread symbols. When the second user is successfully decoded, the vector of its transmitted symbols is denoted as. Then the channel estimation of the first user and second user can be refined by:

                                                                        (15)


where , .
As more users’ data are successfully decoded, more data symbols can be used for channel estimation refinement. The refined channel coefficients are used for interference cancellation, so as to minimize the error propagation of SIC. Therefore, we think that data-aided channel estimation refinement is a method worthy of consideration for NOMA, and it can be applied to various cases.
Proposal 1: Enhanced MMSE-SIC receiver with non-blocking characteristic can be considered in NOMA study.
Proposal 2: User sorting based on e.g. SINR should be considered for NOMA to accelerate SIC processes and improve the performance.
Proposal 3: Data-aided channel estimation refinement can be considered in the receiver for NOMA.

Complexity reduction for MMSE-SIC
As discussed in Section 2.1, S times of matrix inversion are needed if MMSE weight calculation is per modulation symbol. In this section, several complexity reduction methods are discussed:
· Reducing the number of matrix inversions per code block:
In theory, MMSE-SIC requires the calculation of covariance matrix and the corresponding matrix inversion per each modulation symbol when there is channel fading. However, in most of NOMA scenarios, channel variation in time domain is not very fast, the covariance matrix (or the channel coefficients) can be averaged across multiple OFDM symbols on each subcarrier or each L subcarriers, or the whole resource block if the channel response is nearly flat in frequency domain, and thus the number of matrix inversion can be reduced significantly with marginal loss of performance.
· Incremental matrix inversion based on Sherman-Morrison Formula:
Sherman-Morrison Formula is shown in equation (16), where “A” could be set to σ2I and “x” could be set to the channel coefficient hi of one user for initialization, thus matrix inversion can be avoided. In the first detection, the calculation would be looped for all users, but then for the subsequent detections, “A” can be set to the matrix inversion results of the last detection, and “x” can be set to the channel coefficient of the user decoded correctly in the last detection. In this way, the computation complexity can be kept very low.

                                                   (16)
· Incremental matrix inversion based on block matrix inversion:
In this method, a matrix Z can be partitioned into multiple sub-blocks, and then the inversion of matrix Z can be calculated on each of the sub-blocks, as shown in equation (17). From the equation, it is seen that only matrix inversion for matrix B and T are needed, and these two matrices have reduced dimension relative to matrix Z, so complexity reduction can be achieved. This method can be also used to calculate the inversion of a matrix with increased dimension e.g. the case of matrix inversion in LS algorithm for data-aided channel estimation refinement described above.



, ,                             (17)
Besides the methods above, some other dimension-reduction algorithms can also be considered, such as spatial domain de-correlation followed by code domain de-correlation, or vice versa.
Table 1 shows the differences in the complexity of some matrix inversion methods with the same assumptions as described in Section 2.1, and Nsc representing the number of subcarriers for transmission. From the table, significant complexity reduction can be observed.
Table 1 Differences in the complexity of some matrix inversion methods
	Matrix inversion method
	Complexity

	① Matrix inversion per symbol
	O(K*S*(N*L)3)

	② Matrix inversion per L subcarriers
	O(K*Nsc/L*(N*L)3)

	③ Incremental matrix inversion based on Sherman-Morrison Formula
	O(K*S*(N*L)2)

	② + ③
	O(K*Nsc/L*(N*L)2)



Observation 2: The complexity of matrix inversion can be significantly reduced by some methods, which can be considered at least for MMSE-SIC receiver.

MMSE-SIC receiver for preamble/DMRS based NOMA
Compared with MMSE-SIC receiver in ideal scenario, the receiver for preamble/DMRS based NOMA should include additionally the realistic UE identification and detection that are based on the preamble/DMRS. Some considerations on transmitter of preamble/DMRS based NOMA are described in [4].
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Figure 7 A MMSE-SIC receiver for preamble based NOMA
Fig. 7 shows a MMSE-SIC receiver for preamble based NOMA, where blind detection of preamble sequences is done in the first step based on the pre-defined preamble sequence pool to identify transmission UEs. For example if ZC sequence is adopted, the parameters such as root index, cyclic shift and OCC or FDM pattern can be used as the preamble ID to differentiate UEs. Correlation peak detection of the sequences can be performed, based on sliding window correlation at a given false alarm rate. Once the preamble ID is identified, the spreading sequence of this UE would be determined, according to a pre-defined mapping rule. The number of detected UEs, channel estimation based on each user’s preamble sequence, and sequence ID will be input to data processing module with MMSE-SIC procedure.
For “true” grant-free transmission, the following realistic issues should be considered:
· False alarm:
Since the actual sequences selected by the UEs are unknown to gNB, the number of detected UEs based on preamble may be larger than the actual number of UEs in transmission. In this case, gNB would attempt to decode the fictitious UEs in the MMSE-SIC procedure, which introduces additional complexity. However, since the channel estimation and SINR of the fictitious UEs are usually quite low, the impact on the covariance matrix and the equalization of the actual transmission UEs can be neglected, and therefore the performance will not be severely affected.
· Miss detection:
Miss detection due to low SNR: In this case, the number of detected UEs based on preamble may be smaller than the actual number of UEs in transmission. Then the missed UEs would not be treated for data decoding. The impact on the decoding of other UEs is negligible since the SINRs of the missed UEs are usually quite low.
Miss detection due to collision: If two or more UEs select the same preamble sequence, there will be at most one preamble ID detected, which means that only one UE has the chance to be detected. Furthermore, the corresponding channel estimation will be the combination of multiple UEs, which leads to significantly performance degradation due to the non-resolvable interferences.
Based on the above analysis, preamble collision has the most significant impact on the performance of grant-free transmission. Preamble SIC can be considered to alleviate this issue. When collision occurs (gNB can always assume a preamble is shared by multiple UEs although gNB does not know whether it indeed happens) and if one of the conflicting UEs can be successfully decoded, the channel estimation can be refined as shown in Section 3.2, and then the contribution of this UE can be reconstructed and subtracted from the received preamble signal. After that, gNB can update the channel estimation for the same preamble sequence from the residual preamble signal and then try to decode the hidden UEs from the residual data signal, or gNB can do preamble detection again to identify the hidden or missed UEs.
Observation 3: For preamble/DMRS based NOMA to support true grant-free transmission, preamble/DMRS SIC can be considered to alleviate user collision issue.

Blind MMSE-SIC receiver for data-only based NOMA
Due to the limited number of preamble/DMRS, preamble/DMRS collision is a challenging issue for “true” grant free transmission. In this regards, data-only based NOMA is worthy of consideration, in which sequence collision is solved by exploiting the randomness nature of user data. Some considerations on transmitter of data-only based NOMA can be found in [4].
Fig. 8 shows a receiver of data-only based NOMA, where user and symbol stream detection is carried out blindly based on the spreading code set and the received signal, and then blind channel estimation or equalization is carried out, in the absence of reference signal. The details of the blind detection procedure are briefly described as below:
[image: ]
Figure 8 A receiver for data-only based NOMA
(1) 
The received signal can be expressed as , where K is the number of users, hk is the channel coefficient of user k, ck is the spreading code randomly selected by user k, xk is the modulation symbols transmitted by user k, n is the AWGN.
(2) 
Put the received signal y into an L*S matrix Y, where L is the length of spreading code, S is the number of modulation symbols transmitted by each UE, then calculate the covariance matrix by: .
(3) Perform blind detection by using a spreading code in the spreading code set to obtain the symbol stream: 

, where m =1, ... , M. Assuming cm,k is the m-th spreading code in the spreading code set used by user k, we can further derive:

                                               (18)




where, ,  and  are the interferences and noise to user k before and after the blind detection, respectively. From the equation, MMSE-like principle can be observed and  can be considered as a linear processing (e.g., scaling and phase rotation) of the original constellation symbols, which includes multiple clusters of scattered points.
(4) 
If a spreading code matches one of the transmission UEs, the obtained symbol stream after blind detection with the spreading code is usually a linear distortion of the original constellation symbols, symbol clusters can be observed, an example is shown in Fig. 9. For a spreading code not used by any UE, the obtained symbol stream would not show clear patterns. Based on the characteristic of the symbol stream, we can compensate the scaling and phase rotation to restore the estimated signals around the original constellation by  in principle.
(5) 

Calculate the EVM and the equivalent SINR for each symbol stream, then sort the SINRs and select multiple candidate symbol streams with higher SINR for demodulation and decoding. For each candidate symbol stream, multiple hypotheses (e.g.  and  for BPSK modulation) would be tried for decoding because of the possibility of phase ambiguity, which would be resolved by CRC check.
[image: ]
Figure 9 Symbol clusters of a symbol steam after blind detection with a spreading code
The other processes of the receiver are the same as regular MMSE-SIC receiver, and data-aided channel estimation and refinement would be used for interference cancellation.
When multiple Rx antennas are used in the receiver, the method described above can be used for blind detection on each Rx antenna and then combination can be carried out, but in this way interference rejection capability in spatial domain cannot be exploited effectively. The performance can be improved by combining the received signals across multiple Rx antenna with predefined combination factors, e.g. for 2 Rx antennas the following 6 predefined combination factors can be considered: {(1, 0), (0, 1), (1/sqrt(2), 1/sqrt(2)), (1/sqrt(2), -1/sqrt(2)), (1/sqrt(2), 1i/sqrt(2)), (1/sqrt(2), -1i/sqrt(2))}.
The complexity of the blind MMSE-SIC receiver is mainly on the block of “M Decorrelation Operations”, due to that M spreading codes in the spreading code set would be used for blind detection. The complexity is about O(I*C*(L3 + S*L2 + S*L*M)), where I is the number of iterations in the whole receiver procedure, which is related to the number of users, C is the number of predefined combination factors for received signals on multiple Rx antennas, which is related to the number of Rx antennas, and C = 1 if one Rx antenna is used, S is the number of data symbols transmitted by each UE, L is the length of spreading code, M is the number of spreading codes in the spreading code set. The complexity of channel estimation refinement based on the data of decoded users can be kept low via incremental matrix inverse techniques. Another process that has significant contribution to the receiver complexity is the “decoding” block, because that multiple streams would be decoded per iteration and multiple iterations required in the receiver.
Observation 4: Data-only based receiver can be considered to solve sequence collision issue and therefore to achieve true grant-free transmission with moderate complexity.
Conclusions
In this contribution, major types of multi-user receivers for NOMA are discussed, and some receiver implementations based on MMSE-SIC are presented.
Based on this contribution, we make the following observations and proposals:
Observation 1: Hard IC receiver can balance the burden on demodulator and channel decoder, without iterative soft information exchange in between.
Observation 2: The complexity of matrix inversion can be significantly reduced by some methods, which can be considered at least for MMSE-SIC receiver.
Observation 3: For preamble/DMRS based NOMA to support true grant-free transmission, preamble/DMRS SIC can be considered to alleviate user collision issue.
Observation 4: Data-only based receiver can be considered to solve sequence collision issue and therefore to achieve true grant-free transmission with moderate complexity.
Proposal 1: Enhanced MMSE-SIC receiver with non-blocking characteristic can be considered in NOMA study.
Proposal 2: User sorting based on e.g. SINR should be considered for NOMA to accelerate SIC processes and improve the performance.
Proposal 3: Data-aided channel estimation refinement can be considered in the receiver for NOMA.
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Appendix
Table A1 Link level simulation assumptions
	Parameters
	Assumptions

	Carrier Frequency
	2 GHz

	Waveform
	CP-OFDM

	Numerology
	SCS = 15 kHz, #OS = 14 with 12 symbols for data transmission

	Channel Coding
	Turbo

	Allocated bandwidth
	4 RBs

	Spectral efficiency per UE (bits/RE)
	0.25 (code rate = 1/2, QPSK, spreading factor = 4, the spreading code set can be found in Table A4 in [5] )

	Number of UEs multiplexed in the same allocated bandwidth
	4, 8, 12, 16, 20

	BS antenna configuration
	2 Rx

	UE antenna configuration
	1 Tx

	Propagation channel & UE velocity
	TDL-A 30ns in TR38.901, 3km/h

	Max number of HARQ transmission
	1

	Channel estimation
	Ideal channel estimation

	MA signature allocation
	Fixed, the first K spreading codes in the spreading code set are used for K users separately

	Distribution of avg. SNR
	Equal
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