3GPP TSG-RAN WG1 #92	R1-1802902
Athens, Greece, 26th February – 2nd March 2018

Source:	Ericsson
Title:	On remaining issues of PDCCH structure
Agenda Item:	7.1.3.1.1
Document for:	Discussion and Decision
Introduction
In this contribution, we discuss the remaining issues of PDCCH structure needed to stabilize the basic and essential NR functionalities within the scope of the drop approved during RAN#78.
Discussion
PDCCH DMRS sequence initialization
The DMRS sequence generation procedure for the PDCCH in the spec lacks a description for how the pseudo-random sequence generator is initialized, and when defining this procedure, it is reasonable to use the corresponding procedure for PDSCH as a starting point.
At RAN1 ad hoc in January, it was agreed that DM-RS sequence for PDCCH is initialized with an equation with at least symbol index, slot index, and the ID. It is for further study if further randomization to avoid consistent collisions over frames is introduced. The concern was that especially for RMSI the CORESET might be heavily loaded and the inter-cell interference would degrade channel estimation performance if the seed is always the same across frames. This issue occurs only in a system which is synched on slot and symbol level. For such a system, it is likely that also the SFNs are equal in such a system. And in that case, it will not help to include the SFNs in the seed derivation as the seeds would still be identical. Even in the case of a system that is synched at slot and symbol level but not at frame level, NR provides a rich tool of flexibility to mitigate the inter-cell interference. Considering that RAN1’s current focus is on stabilizing the basic and essential NR functionalities within the scope of the drop approved during RAN#78, it may not be necessary to introduce further randomization based on frame ID, unless convincing results that clearly demonstrate the technical benefits and justify the essential use scenario are shown.
Using the corresponding procedure for PDSCH as a starting point, the possibility to dynamically switch between two DMRS sequence can be removed, since this is not necessary for PDCCH. Furthermore, the dedicated sequence generation seed is only used if the DMRS sequence is confined to REGs constituting the PDCCH the UE attempts to decode.
Hence, we propose
[bookmark: _Toc503442802][bookmark: _Toc503507630][bookmark: _Toc503507931][bookmark: _Toc506212765][bookmark: _Toc506212826][bookmark: _Toc506232369][bookmark: _Toc506295846][bookmark: _Toc506298086][bookmark: _Toc506301055][bookmark: _Toc506474812][bookmark: _Toc506541976]Make the following addition to subsection 7.4.1.3.1 and inform RAN2 about the associated update to the RRC parameter signalling:
[bookmark: _Toc503442803][bookmark: _Toc503507631][bookmark: _Toc503507932][bookmark: _Toc506212766][bookmark: _Toc506212827][bookmark: _Toc506232370][bookmark: _Toc506295847][bookmark: _Toc506298087][bookmark: _Toc506301056][bookmark: _Toc506474813][bookmark: _Toc506541977]>>>>>>>>>>>> Start of text proposal >>>>>>>>>>>>

The UE shall assume the reference-signal sequence is defined by

.

where the pseudo-random sequence is defined in clause 5.2.1. The pseudo-random sequence generator shall be initialized with

where is the OFDM symbol number within the slot, is the slot number within a frame, and

-	 is given by the higher-layer parameter PDCCH-DMRS-Scrambling-ID if provided and if the higher-layer parameter CORESET-precoder-granularity equals CORESET-REG-bundle-size

-	 otherwise
[bookmark: _Toc503442804][bookmark: _Toc503507632][bookmark: _Toc503507933][bookmark: _Toc506212767][bookmark: _Toc506212828][bookmark: _Toc506232371][bookmark: _Toc506295848][bookmark: _Toc506298088][bookmark: _Toc506301057][bookmark: _Toc506474814][bookmark: _Toc506541978]>>>>>>>>>>>> End of text proposal >>>>>>>>>>>>
PDCCH and SSB collision handling
When a CORESET overlaps with SSB transmission in a slot, scheduling with PDCCH for both DL and UL is impacted. It had been proposed to consider dropping PDCCH candidates. This, however, does not appear to be feasible given that the REG are indexed in time first order. As a result, even mild partial overlapping between the CORESET and the SSB transmission can cause most, if not all, of the PDCCH candidates to be dropped. This will disable DL and more problematically UL scheduling from such a slot.
Therefore, a better approach to address the overlapping issue is to shrink the CORESET in the time domain to avoid the overlap. When the CORESET duration in time domain changes, the REG bundle size may also need to be changed since, for instance, is supported for a 3-OS CORESET but not for a 2-OS CORESET. Furthermore, the combination of and the PDCCH interleaver row setting should be such that the new total number of REGs in the shrunk CORESET is evenly divisible by .
[image:]
[bookmark: _Toc506541979]Given the above identified interlocking of the CORESET time domain duration, REG bundle size and interleaver row settings, it will be best for the gNB to provide such a set of alternative settings for the CORESET in slots containing SSB transmissions. In the current 38.331 specs, the CORESET is configured via the ControlResourceSet IE which contains, among other elements, the following two elements:
· [bookmark: _Toc506541980]duration
· [bookmark: _Toc506541981]cce-REG-MappingType which can be set to either interleaved or nonInterleaved. When set to interleaved, it further contains reg-BundleSize and interleaverSize (which is the parameter in the above).
[bookmark: _Toc506541982]For a CORESET that can overlap with SSB transmission in a slot, the gNB can optionally provide alternative duration and cce-REG-MappingType in the CORESET configuration. For example, two OPTIONAL elements durationInSsbSlot and cce-REG-MappingTypeInSsbSlot can be added to the ControlResourceSet IE. This allows the gNB to provide an alternative duration for the CORESET when a slot contains SSB transmissions. If necessary, the gNB can provide alternative settings of and/or for these slots.
[bookmark: _Hlk506538205][bookmark: _Toc506541983]For a CORESET that can overlap with SSB transmission in a slot, the gNB can optionally provide alternative duration and cce-REG-MappingType for slots containing SSB transmissions in the CORESET configuration.
PDCCH DMRS mapping to physical resource
At RAN1 NR ad hoc in January, it was agreed that DMRS sequence for PDCCH is generated per symbol, leading to the following updated equations for PDCCH DMRS mapping to physical resource

DMRS sequence for PDCCH is generated per symbol, is no longer needed in the above equations. Thus, we have the following proposal.

[bookmark: _Toc506298089][bookmark: _Toc506301058][bookmark: _Toc506474815][bookmark: _Toc506541984]The UE shall assume the sequence is mapped to resource elements according to

PDCCH interleaver shift

For PDCCH interleaver shift, is a function of for a PDCCH transmitted in a CORESET configured by the PBCH or RMSI, or is a function of the higher-layer parameter CORESET-shift-index. For ease of reference, we use which denotes for CORESET configured by the PBCH or RMSI and denotes CORESET-shift-index
The specific function(s) are still open. The essence of the question is about the granularity of the shift. Currently there are two proposed options.
·
Option 1: the shift is at the unit of REG bundle, i.e., one-to-one correspondence can be used:
·
Option 2: the shift is at the unit of 6-REG bundle level in frequency domain:
It is claimed that Option 2 might help reduce blocking probability when two CORESETS overlap where one is interleaved and the other is not interleaved. However, this benefit is questionable as it is based on a specific example. Further, Option 2 also makes the shift step larger and thus effectively reduces the number of REG bundle interleaved patterns. Considering that RAN1’s current focus is on stabilizing the basic and essential NR functionalities within the scope of the drop approved during RAN#78, the potentially optimization Option 2 may not be necessary, unless convincing results that clearly demonstrate the technical benefits in general setting are shown.

[bookmark: _Toc506295849][bookmark: _Toc506298091][bookmark: _Toc506301060][bookmark: _Toc506474817][bookmark: _Toc506541986]For PDCCH interleaver, equals for a PDCCH transmitted in a CORESET configured by the PBCH or RMSI, or equals the higher-layer parameter CORESET-shift-index.
[bookmark: _Hlk506228658]CORESET configured by PBCH or RMSI
For CORESET configured by PBCH, the necessary parameters required from higher layers should be fixed if not configured in MIB. These include
· [bookmark: _Hlk506228813]CORESET-CCE-REG-mapping-type: This should be fixed to be interleaved to achieve frequency diversity.
· CORESET-interleaver-size: This can be fixed to be 3 or 6, as 2 is a bit short in terms of frequency diversity. We have slight preference on using size 6, since it may provide slightly better frequency diversity gain than size 3, as illustrated in the Appendix.
· CORESET-precoder-granularity: This should be fixed to be REG bundle size to take advantage of precoder cycling gain. In this case, the bundle size L=6, as already agreed for PBCH.
For RMSI-configured CORESET, it can be configured in the same way as any other non-MIB-configured CORESETs, i.e., we do not see a need to fix certain parameters required from higher layers.
[bookmark: _Toc506232372][bookmark: _Toc506295850][bookmark: _Toc506298092][bookmark: _Toc506301061][bookmark: _Toc506474818][bookmark: _Toc506541987]For CORESET configured by PBCH, fix the following parameters in the spec
· [bookmark: _Toc506232373][bookmark: _Toc506295851][bookmark: _Toc506298093][bookmark: _Toc506301062][bookmark: _Toc506474819][bookmark: _Toc506541988]CORESET-CCE-REG-mapping-type: interleaved
· [bookmark: _Toc506232374][bookmark: _Toc506295852][bookmark: _Toc506298094][bookmark: _Toc506301063][bookmark: _Toc506474820][bookmark: _Toc506541989][bookmark: _Toc506541990]CORESET-interleaver-size: fixed to be 3 or 6 (6 is slightly preferred)
· [bookmark: _Toc506232375][bookmark: _Toc506295853][bookmark: _Toc506298095][bookmark: _Toc506301064][bookmark: _Toc506474821][bookmark: _Toc506541991]CORESET-precoder-granularity: REG bundle size
[bookmark: _Toc506232376][bookmark: _Toc506295854][bookmark: _Toc506298096][bookmark: _Toc506301065][bookmark: _Toc506474822][bookmark: _Toc506541992]RMSI-configured CORESET is configured in the same way as any other non-MIB-configured CORESET, i.e., no need to fix parameters required from higher layers
CORESET-freq-dom bitmap
The description for the interpretation of CORESET-freq-dom bitmap in TS 38.213, Clause 10.1 is not clear and is not aligned with the agreements achieved in RAN1#91 meeting for CORESET frequency resource allocation as below:
· For a CORESET configured by UE-specific RRC signaling, DL BWP-specific RB indexing + RB-offset are used to configure frequency-domain resource.
· The length of the bit-map is Floor((N_RB – (ceil(BWP_start/6)*6-BWP_start))/6)
· CORESET starting RB is ceil(BWP_start/6)*6
· For a CORESET configured by PBCH/RMSI, RB indexing is for the initial DL BWP.
[bookmark: _Toc506474823][bookmark: _Toc506541993]Therefore, we propose
[bookmark: _Toc506474824][bookmark: _Toc506541994]Make the following update to subsection 10.1 in TS 38.213:
[bookmark: _Toc506474825][bookmark: _Toc506541995]>>>>>>>>>>>> Start of text proposal >>>>>>>>>>>>

For each control resource set in a DL BWP of a serving cell, a respective higher layer parameter CORESET-freq-dom provides a bitmap. The bits of the bitmap have a one-to-one mapping with non-overlapping groups of 6 PRBs, in ascending order of the PRB index in the DL BWP bandwidth of PRBs with starting position where the first PRB of the first group of 6 PRBs has index .

[bookmark: _Hlk506375330]For each control resource set in a DL BWP of a serving cell, a respective higher layer parameter CORESET-freq-dom provides a bitmap with length of , where is the number of PRBs within the DL BWP and is the common resource block index where the DL BWP starts relative to common resource block 0. The bits of the bitmap have a one-to-one mapping with non-overlapping groups of 6 PRBs, in ascending order of the PRB index in the DL where the first PRB of the first group of 6 PRBs has index . The first group of 6 PRBs corresponds to the MSB of the bitmap. A group of 6 PRBs is allocated to the control resource set if the corresponding bit value in the bitmap is 1, otherwise it is not allocated to the control resource set.
[bookmark: _Toc506474826][bookmark: _Toc506541996]>>>>>>>>>>>> End of text proposal >>>>>>>>>>>>
Conclusions
In this contribution, we discuss the remaining issues of PDCCH structure needed to stabilize the basic and essential NR functionalities within the scope of the drop approved during RAN#78.
Based on the discussion in this contribution, we propose the following:
Proposal 1	Make the following addition to subsection 7.4.1.3.1 and inform RAN2 about the associated update to the RRC parameter signalling:
>>>>>>>>>>>> Start of text proposal >>>>>>>>>>>>

The UE shall assume the reference-signal sequence is defined by

.

where the pseudo-random sequence is defined in clause 5.2.1. The pseudo-random sequence generator shall be initialized with

where is the OFDM symbol number within the slot, is the slot number within a frame, and

-	 is given by the higher-layer parameter PDCCH-DMRS-Scrambling-ID if provided and if the higher-layer parameter CORESET-precoder-granularity equals CORESET-REG-bundle-size

-	 otherwise
>>>>>>>>>>>> End of text proposal >>>>>>>>>>>>
Proposal 2	For a CORESET that can overlap with SSB transmission in a slot, the gNB can optionally provide alternative duration and cce-REG-MappingType for slots containing SSB transmissions in the CORESET configuration.

Proposal 3	The UE shall assume the sequence is mapped to resource elements according to

Proposal 4	For PDCCH interleaver, equals for a PDCCH transmitted in a CORESET configured by the PBCH or RMSI, or equals the higher-layer parameter CORESET-shift-index.
Proposal 5	For CORESET configured by PBCH, fix the following parameters in the spec
-	CORESET-CCE-REG-mapping-type: interleaved
[bookmark: _GoBack]-	CORESET-interleaver-size: fixed to be 3 or 6 (6 is slightly preferred)
-	CORESET-precoder-granularity: REG bundle size
Proposal 6	RMSI-configured CORESET is configured in the same way as any other non-MIB-configured CORESET, i.e., no need to fix parameters required from higher layers
Therefore, we propose
Proposal 7	Make the following update to subsection 10.1 in TS 38.213:
>>>>>>>>>>>> Start of text proposal >>>>>>>>>>>>

For each control resource set in a DL BWP of a serving cell, a respective higher layer parameter CORESET-freq-dom provides a bitmap. The bits of the bitmap have a one-to-one mapping with non-overlapping groups of 6 PRBs, in ascending order of the PRB index in the DL BWP bandwidth of PRBs with starting position where the first PRB of the first group of 6 PRBs has index .

For each control resource set in a DL BWP of a serving cell, a respective higher layer parameter CORESET-freq-dom provides a bitmap with length of , where is the number of PRBs within the DL BWP and is the common resource block index where the DL BWP starts relative to common resource block 0. The bits of the bitmap have a one-to-one mapping with non-overlapping groups of 6 PRBs, in ascending order of the PRB index in the DL where the first PRB of the first group of 6 PRBs has index . The first group of 6 PRBs corresponds to the MSB of the bitmap. A group of 6 PRBs is allocated to the control resource set if the corresponding bit value in the bitmap is 1, otherwise it is not allocated to the control resource set.
>>>>>>>>>>>> End of text proposal >>>>>>>>>>>>

[bookmark: _In-sequence_SDU_delivery]References
[bookmark: _Ref503441725][bookmark: _Ref503507915]R1-1801291, 38.211 after NR RAN1 ad hoc #1801
TS 38.213
Appendix: Illustration of how REG bundles are distributed in frequency with R=3 and R=6 for AL=4, 8, and 16
For R=3:
AL = 4				 AL = 8				AL = 16
	

2
	

5
2
	
14
11
8
5
2

	

1
	

7
4
1
	
13
10
7
4
1

	

3
0
	

6
3
0
	15
12
9
6
3
0

For R=6:
AL = 4				 AL = 8				AL = 16
	

	

5
	
11
5

	

4
	

4
	
10
4

	

3
	

3
	15
9
3

	

2
	

2
	14
8
2

	

1
	
7
1
	13
7
1

	

0
	
6
0
	12
6
0

image2.wmf
(

)

(

)

)

1

2

(

2

1

2

1

)

2

(

2

1

2

1

)

(

+

×

-

+

×

-

=

m

c

j

m

c

m

r

oleObject2.bin

image3.wmf
)

(

i

c

oleObject3.bin

image4.wmf
(

)

(

)

(

)

31

ID

ID

f

s,

17

init

2

mod

2

1

2

1

14

2

N

N

l

n

c

+

+

+

+

=

m

oleObject4.bin

image5.wmf
l

oleObject5.bin

image6.wmf
m

f

s,

n

oleObject6.bin

image7.wmf
{

}

65535

,...,

1

,

0

ID

Î

N

oleObject7.bin

image8.wmf
cell

ID

ID

N

N

=

oleObject8.bin

image9.emf

image10.wmf
(

)

ë

û

,...

1

,

0

mod

2

,

1

,

0

1

4

3

CORESET

symb

CORESET

symb

RB

sc

PDCCH

DMRS

)

,

(

,

=

=

=

¢

+

¢

+

=

¢

+

×

=

n

N

n

l

k

k

N

n

N

k

k

n

r

a

l

p

l

k

b

m

oleObject9.bin

image11.wmf
CORESET

symb

N

oleObject10.bin

image12.wmf
)

(

m

r

l

oleObject11.bin

image13.wmf
(

)

m

,

,

p

l

k

oleObject12.bin

image14.wmf
(

)

,...

1

,

0

2

,

1

,

0

1

4

3

RB

sc

PDCCH

DMRS

)

,

(

,

=

=

¢

+

¢

+

=

¢

+

×

=

n

k

k

n

N

k

k

n

r

a

l

p

l

k

b

m

oleObject13.bin

image15.wmf
shift

n

oleObject14.bin

image16.wmf
cell

ID

N

oleObject15.bin

image17.wmf
{

}

274

,...,

1

,

0

shift

Î

n

oleObject16.bin

image18.wmf
ID

N

oleObject17.bin

oleObject18.bin

image19.wmf
ID

N

n

=

shift

oleObject19.bin

image20.wmf
CORESET

symb

shift

6

*

N

L

N

n

ID

=

oleObject20.bin

oleObject21.bin

oleObject22.bin

oleObject23.bin

image21.wmf
BWP

RB

N

oleObject24.bin

image22.wmf
start

BWP

N

oleObject25.bin

image23.wmf
é

ù

6

6

start

BWP

N

×

oleObject26.bin

image24.wmf
(

)

sizestartstart

BWPBWPBWP

666

NNN

êú

éù

éù

-×-

êú

ëû

ëû

oleObject27.bin

image25.wmf
size

BWP

N

oleObject28.bin

image26.wmf
start

BWP

N

oleObject29.bin

image27.wmf
start

BWP

66

N

éù

×

êú

oleObject30.bin

oleObject31.bin

oleObject32.bin

oleObject33.bin

oleObject34.bin

oleObject35.bin

oleObject36.bin

oleObject37.bin

oleObject38.bin

oleObject39.bin

oleObject40.bin

oleObject41.bin

oleObject42.bin

oleObject43.bin

oleObject44.bin

oleObject45.bin

image1.wmf
)

(

m

r

oleObject46.bin

oleObject47.bin

oleObject48.bin

oleObject49.bin

oleObject50.bin

oleObject51.bin

oleObject1.bin

