3GPP TSG RAN WG1 Meeting 91 			R1-1720870
Reno, USA, November 27th – December 1st, 2017

Agenda item:		7.4.2.3
Source:	Nokia, Nokia Shanghai Bell
Title:	Discussion of PBCH bit mapping
Document for:		Decision
1	Introduction
According to the agreements made in RAN1#90b [1], NR-PBCH payload size is 56 bits and there would be some known bits reserved according to the analysis in [2]. Proper mapping the known bits to the subchannels may give considerable gain. Additionally, the mapping of other bits in PBCH may also affect the performance as some bits are also quite static and could be taken as frozen bits in decoding.
In this contribution, the details of the bit ordering and mapping of PBCH are discussed.
2.		 Discussion
The PBCH message size and some details of the content were agreed in RAN1#90b, listed below:
		Agreements:
· (working assumption) NR-PBCH has a payload size of 56 bits (including CRC)
· 10-bit SFN is carried by NR-PBCH
· (working assumption) 4-bit PRB grid offset is carried by NR-PBCH

Agreements:
· A single bit is used in NR-PBCH for indicating the numerology for RMSI, Msg.2/4 for initial access and broadcasted OSI

Agreements:
· One-bit half frame indication is part of PBCH payload, and when CSI-RS for measurement has a periodicity of 20ms or larger, the UE assumes the network is “synchronous” for the purpose of measurement
· For 3GHz and below, half frame indication is further implicitly signaled as part of PBCH DMRS for max L=4
	
Agreement from RAN1#89:
· Polar coding is adopted for NR-PBCH
· Using same polar code construction as for the control channel
· Nmax = 512

Clarification of the above agreement:
· Reuse Polar code design of PDCCH, i.e., 24-bit D-CRC with the associated interleaver.

Agreement:
Working assumption from RAN1#89 is confirmed, that the data, including time index if carried by NR-PBCH, is transmitted explicitly

With above agreements and the analysis in [2], there are approximately 10 SFN + 1 HF bits about 20% of the total message size. These are known in the synchronized network situations. Hence, it is beneficial to discuss how to map these known bits and other information bits to the subchannels to achieve the gains of early termination and/or decoding improvement. The detailed analysis of the PBCH content is captured in Table-1.
Table-1 PBCH content details
	Parameter
	Number of bits

	SFN
	10

	Half-frame timing
	1

	SS block location index
	3

	Configuration for CORESET for RMSI scheduling
	8

	RAN2
	3

	Offset between SS block frequency domain location and PRB grid in RE level
	4

	DL numerology to be used for RMSI, Msg.2/4 for initial access and broadcasted OSI
	1

	Indication of the 1st DMRS position
	1

	Spare
	1

	CRC
	24

	Together
	56

In RAN1 #90bis, it was also agreed to consider following next steps,
Next steps:
Study further until RAN1#91 the order of the PBCH fields, considering whether one or more PBCH fields that have known bit values in certain scenarios are placed in a specific order to enable potentially improved PBCH decoder performance/latency (with the CRC being calculated based on the order of the payload after this ordering)
· Examples of field(s) to be considered in particular include:
· SS block time index;
· SFN bits (e.g. for handover cases when the SFN is known a priori);
· reserved bits
· Note that backward compatibility problems in future releases should be avoided.

There are basically three options to map the known bits (we refer this terminology even it is known in certain cases. E.g., SFN is known only in synchronized networks):
1. The known bits are appended to the information bits and mapped on the subchannels like the information bits, i.e., no additional mapping procedure is performed.
2. Map the known bits on the most front subchannels. Mapping to the most front subchannels would be useful for early termination.
3. Map the known bits on the most unreliable subchannels, which would be helpful to improve the decoding performance.

For any of the above options, the known bits may be used as a kind of checking bit in the list decoding as discussed in [3]. Suppose only 5bits are known, the early termination gain of the above options is studied and the results are shown in Figure 1. ET without known bits is the case that the known bits are taken as information bits, and it can be seen from the figure that the early termination gain is about 21%. If the known bits are used for checking, the early termination gain is improved to about 34% for low SNR cases. This may be further improved when the known bits mapped on the most unreliable subchannels. The maximum early termination gain comes from mapping the known bits on the front subchannels, about 45%, about 6% higher than mapping on the most unreliable subchannels. The difference is not very much because there are some overlapping of most unreliable and most front subchannels.
[image:]
Figure 1. The early termination gain of different options.

If the known bits are taken as known in the decoding, the BLER can be effectively reduced and this is shown in Figure 2. When the 5 known bits are mapped on the most unreliable subchannels, about 0.4dB gain can be achieved. The BLER performance of mapping on the front or mapping as usual has no difference in BLER. If more bits are known, e.g., 11bits, higher BLER gain is achievable.
[image:]
Figure 2. The BLER of different options

On the other hand, for the cell edge UE that needed 8 soft combining, when BLER is reduced, only 7 may be enough as the SNR difference between 7 and 8 soft combing is only about 0.5dB. This is equivalent to the early termination in terms of power saving and the equivalent ET gain is about 12.5%. These evaluations show there is a substantial gain if the known bits are used in decoding. It seems mapping on the most unreliable subchannels is a good balance.

[image:]
Figure 3. The BLER in cases of soft combining

Observation 1: The known bits mapped on the most unreliable subchannels provide performance gains.

Next, the question is which are the bits that we can assume as known. It is safer to assume only SFN and HF bits are known in certain cases. It is hard to assume that reserved bits of SSB index bits as known because they can be used for other purposes in later releases. However, with the current agreement in initial access discussions, there is scrambling applied on most of the SFN bits.
Agreements:
· 1st scrambling, initialization based on Cell ID and a part of SFN, is applied to PBCH payload excluding SS block index, half radio frame (if present) and the part of SFN prior to CRC attachment and encoding process
· The part of SFN is one the following, (to be selected by NR AH3)
· 3 LSB bits of SFN
· 2nd and 3rd LSB bits of SFN
· FFS: half radio frame index as part of the initialization of the 1st scrambling
· FFS: whether or not half radio frame index is a part of PBCH payload
· FFS: whether or not 2nd scrambling, initialization based on cell ID only, is applied to encoded PBCH bits in a SS block

It is good to remove the SFN + HF from the initial scrambling stage, and place them in unreliable positions of the polar code word.
The change can be done as follows,

Denote the bits in a transport block delivered to layer 1 by , where is the payload size. The lowest order information bit is mapped to the most significant bit of the transport block as defined in Section x.x of [TS38.321].

For PBCH transmission in a frame, the bit sequence is scrambled into a bit sequence , where for and is generated according to the following:

;

;

while

	if corresponds to any one of the bits belonging to the SS/PBCH block index, the half radio frame index, and bits of the system frame number

 		;
else

;

		;
	end if

;
end while

[bookmark: _GoBack]Proposal 1: SFN and HF bits should not be scrambled in the 1st stage scrambling of the PBCH payload.
The bit field arrangement the SFN bits and HF bit can be done before the scrambling stage or after that stage. But, the arrangement will be the same and it should be done such that SFN and HF bits are mapped to lower reliable positions.
Proposal 2: SFN and HF should be mapped on the unreliable subchannels of the information bit positions.
3	Conclusion
In this contribution, we discussed the details of PBCH bit mapping. There is substantial gain if the known bits are used in decoding. It seems mapping on the most unreliable subchannels is a good balance. The overall mapping order is also discussed and the proposals are:
Observation 1: The known bits mapped on the most unreliable subchannels provide performance gains.
Proposal 1: SFN and HF bits should not be scrambled in the 1st stage scrambling of the PBCH payload.
Proposal 2: SFN and HF should be mapped on the unreliable subchannels of the information bit positions.

References
[1] RAN1 Chairman’s notes, RAN1 #90b, Prague, CZ
[2] R1-1720880, “Remaining details on NR-PBCH”, Nokia, Nokia Shanghai Bell
[3] R1-1717998, “Polar Code Design for NR-PBCH”, Ericsson

image1.emf
-22-20-18-16-14-12-10-8-6

Es/No

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

E

T

g

a

i

n

w/o known bits

with 5 known bits appended

with 5 known bits in front

with 5 known bits on most unreliable subchannels

image2.emf
-14-13-12-11-10-9-8-7-6

Es/No

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

B

L

E

R

w/o known bits

with 5 known bits appended

with 5 known bits in front

with 5 known bits on most unreliable subchannels

with 11 known bits on most unreliable subchannels

image3.emf
-22-20-18-16-14-12-10-8-6

Es/No

10

-4

10

-3

10

-2

10

-1

10

0

B

L

E

R

1 msg decoding

2 msgs decoding

3 msgs decoding

4 msgs decoding

5 msgs decoding

6 msgs decoding

7 msgs decoding

8 msgs decoding

image4.wmf
1

3

2

1

0

,...,

,

,

,

-

A

a

a

a

a

a

oleObject1.bin

image5.wmf
A

oleObject2.bin

image6.wmf
0

a

oleObject3.bin

oleObject4.bin

image7.wmf
1

3

2

1

0

'

,...,

'

,

'

,

'

,

'

-

A

a

a

a

a

a

oleObject5.bin

image8.wmf
(

)

2

mod

'

i

i

i

s

a

a

+

=

oleObject6.bin

image9.wmf
1

,...,

1

,

0

-

=

A

i

oleObject7.bin

image10.wmf
1

3

2

1

0

,...,

,

,

,

-

A

s

s

s

s

s

oleObject8.bin

image11.wmf
0

=

i

oleObject9.bin

image12.wmf
0

=

j

oleObject10.bin

image13.wmf
A

i

<

oleObject11.bin

image14.wmf
i

a

oleObject12.bin

image15.wmf
0

=

i

s

oleObject13.bin

image16.wmf
)

(

vM

j

c

s

i

+

=

oleObject14.bin

image17.wmf
1

+

=

j

j

oleObject15.bin

image18.wmf
1

+

=

i

i

oleObject16.bin

