3GPP TSG RAN WG1 Meeting 90bis 		R1-1717407
Prague, CZ, 9th – 13th, October 2017
Agenda Item:	7.4.2.1
Source: 	Intel Corporation
[bookmark: Title]Title:	Remaining issues for Polar code construction
Document for:	Discussion/Decision
1. Introduction
In this contribution we discuss some aspects of code construction including the following:
· RNTI related aspects of NR control channel
· Support of large payload UCI via segmentation
· Location of the uplink channel interleaver
2. Polar Encoding chain
Based on the above, our understanding of Polar coding chain based on the DL code construction (Fig.1) is shown below. Note the value of CRC masking, frozen bit values and Scrambling operation are under discussion and will be discussed in this document further.
[image:]
Figure 1. Polar encoding Chain.
We discuss the CRC masking first, and then discuss the frozen bit values together with Scrambling operation.
3. CRC Masking to support multiple RNTIs with one Polar BD
In consideration of RNTI-related aspects, it is important to ensure that some key properties/benefits of control channel coding from 3G/4G are still maintained in NR. In particular, it includes efficient support of multiple RNTI(s) for a given UE, both in common messaging (e.g. SI-RNTI, P-RNTI, RA-RNTI, TPC-RNTI, etc) as well as in UE-specific messaging (e.g. C-RNTI, SPS-RNTI, RNTI for uplink grant-free, etc). A UE should be able to discern different RNTIs for a given Polar decoding attempt by checking multiple CRC hypotheses, noting that increase CRC length in NR would allow control of falsing rates. Such a scheme is obtained by CRC masking operation, where the mask corresponding to the corresponding RNTI is applied on the CRC bits. Since this scheme is necessary for DL control channel operation, we propose the following.
Proposal 1: CRC attached to a DCI message is masked with RNTI corresponding to the DCI message.
Given the RNTI is currently 16-bit, and the CRC attached for DCI is 24 bits, we think it is reasonable to attach the RNTI mask to the CRC bits occurring latter in the Polar channel interleaver – this avoids having to apply RNTI mask on the distributed CRC bits which could affect potential early termination scheme. For example last 16-bits of CRC can be masked with the RNTI with the current DL CRC+interleaver.
Proposal 2: CRC bits towards the end of the decoding order are masked with RNTI.
4. Frozen bit values and Scrambling Operation
In past discussions on code construction, multiple ways of handling UEID in assisting early termination of Polar was discussed though RAN1 agreed to a CRC+interleaver based code construction to facilitate early termination on the downlink. It was mentioned in several contributions [2]-[7] that placing UEID into frozen bits can provide early termination benefits by means of using path-metric based thresholds. Some previous studies on path-metric divergence based on correct/incorrect paths may also be found in [8][9]. In a previous meeting the following proposal was put forth for study.
Proposed Working Assumption:
· Frozen bit values are set to 0
· Adopt UE-specific linear scrambling on UE-specific DCI messages
· Detailed mechanism FFS until NR AH#3
We first clarify the current proposals for setting of Frozen bit values.
· Alt 1Frozen: Frozen bit values are set to 0.
· Alt 2Frozen: Frozen bit values are set to a function of UEID (e.g. LFSR(UEID))
Alt2Frozen is equivalent to applying frozen bit values set to 0, and applying a scrambling sequence obtained based on a function of UEID that is further encoded via Polar encoder. This is denoted as Alt2Scrambling below. Compare this to a simpler scrambling utilized in LTE for many channels including (PDCCH, PDSCH, PUSCH, PUCCH, EPDCCH, etc), which is a simple LFSR based on a scrambling initializer.
· Alt 1Scrambling: Gold sequence based on RNTI on output of Polar Rate-matcher (non-Polar encoding based or based on LFSR/Gold sequence)
· Alt 2Scrambling : Frozen bits based on UEID aka Polar encoder-based scrambling ((Polar encoding based))
In the rest of this section, we look at Alt1 vs Alt2 to see if there is any potential benefit of exploring Alt2. We believe that Alt1Frozen+ Alt1Scrambling is simple, effective solution and should be adopted for NR PDCCH.
Alt2Frozen can impact both Polar encoder and decoder functionality; since the Frozen bits are not set to 0 always, it could require modifications (e.g. for encoding and decoding operations based on SSC, etc). An alternative is to extract out the impact into an equivalent scrambling sequence that is applied post-rate matching, but the computation of this “equivalent scrambling sequence” is non-trivial as it has to take the whole Polar coding chain into consideration.
We show the steps of descrambling for Alt1Scrambling and Alt2Scrambling in Figures 2 and 3 respectively. As the figure indicates, if scrambling is to be performed outside the Polar decoder, Alt2Scrambling requires more steps. In another alternative implementation, the Alt2Scrambling operation applied inside the Polar decoder to simplify a bit, but it still requires the LFSR and at least the extra Polar encoding operation.

[image:]
Figure 2. Alt1 DeScrambling applied on Decoder side.
[image:]
Figure 3. Alt2 DeScrambling applied on Decoder side.
· Hardware complexity
· In our understanding, Alt2Scrambling can increase complexity of Polar decoder due to the introduction of the extra Polar encoding operation. One could argue that there is no extra hardware complexity increase as the UE could reuse the hardware for Polar encoding (from uplink), but the concern is that this puts extra design burden (h/w sharing between Tx and Rx) which would impact both uplink and downlink processing budget for NR design. Compare this to AltScrambling which is trivial would be applied for most other NR channels including PDSCH, PUSCH, etc.
· BD complexity increase on UE search space
· Inserting the RNTI associated with the UE-specific message into frozen bits can increase the required BD complexity on UESS if the operation is to be done via a descrambling operation prior to Polar decoding on the UE side. For example, if the C-RNTI and SPS-C-RNTI are inserted into the frozen bits, then a UE may be unable to descramble prior to the Polar decoding without having to do multiple Polar BD attempts instead of single Polar BD.
· BD complexity increase on common search space
· Inserting the RNTI associated with the UE-specific message into frozen bits would increase the required BD complexity on CSS because a UE would have to perform multiple Polar BD attempts on a single AL candidate to support different RNTIs on the CSS – e.g. one BD for C-RNTI and one for common message. This is undesirable and may not be consistent with typical system operation envisioned for NR PDCCH design, where CSS would be used for UE-specific DCI (e.g. fallback).
The benefits of inserting UEID into frozen bits should consider the utility of such a scheme in typical system operation. We next look at some potential scenarios in typical system operation and try to identify cases where Alt2Scrambling (or Alt2Frozen) can provide benefits over Alt1Scrambling.
Pure noise into the Polar decoder
· If a UE has a received vector y which is basically random LLRs (pure noise), then if scrambling is applied (Alt1 or Alt2), the Polar decoder would be decoding another random vector yꞌ – so any potential PM-based ET would already be feasible without having to apply any additional scrambling. Therefore, our understanding is that Alt2Scrambling would not provide any additional benefits over Alt1Scrambling or no scrambling.
Random QPSK signal into Polar decoder
· If a UE has a received vector y which is random LLRs (due to random QPSK), then if scrambling is applied (Alt1 or Alt2), the Polar decoder would be decoding another random vector yꞌ (corresponding to another random QPSK vector) – so any potential PM-based ET would already be feasible without having to apply any additional scrambling. Therefore, our understanding is that Alt2Scrambling would not provide any additional benefits over Alt1Scrambling or no scrambling.
See example path metric distributions in Figure 4 (K=64+19-bit CRC, rate-1/6, for List 8 decoder) for Alt1Scrambling (left), Alt2Scrambling (middle) and no scrambling (right) cases. It can be seen that there is no difference in PM behavior. The same thing can be seen with pure AWGN noise on decoder input.
[image:] [image:] [image:]
Figure 4. Floating-point path metric distributions (delta between first and last path’s metrics). Random QPSK decoder input.
Observation 1: UEID-based scrambling bits does not provide any benefit for the cases in typical system operation when decoder input is pure AWGN or random QPSK.
For different payload size (UE1 using K1, and UE2 using K2) or different AL (UE1 using ALx and UE2 using ALy) or different DMRS (e.g. UE1 using DMRS-seed1 and UE2 using DMRS-seed2), and if the transmission was intended for UE2
· In all these cases, UE1 will see either random QPSK signal or random noise, and as described earlier, Alt2Scrambling would not provide any additional benefits over Alt1Scrambling or no scrambling.
For same payload size (UE1 and UE2 using K) and same AL and same DMRS and if the transmission was intended for UE2
· When UE1 (wrong UE) is decoding: if Path-metric quality (e.g. between best and worst path) for UE1’s Polar decode does not grow as the list decoder traverse through the decoded bits, at some point in the decoding, the UE could potentially determine (e.g. based on PM thresholds) that it is not worth decoding and UE can terminate early. But there are several factors to consider here. Firstly, the threshold or PM threshold values need to be carefully tuned, since it would be sensitive to SNR.
· If SNR is low, it would be difficult to early terminate because all paths may look close to one another. Alt2 would not provide any additional benefits over Alt1.
· If SNR (to the wrong UE) is “relatively high”, all paths in UE1 may look close to one another, which means it would be difficult to early terminate unless UE can also estimate SNR reliably (again there is a question as to whether this would require additional measurements (e.g. additional RSRP measurements on the CORESET) or average SNR estimated for distributed PDCCH, and adjust its threshold appropriately. Moreover, these PM distributions are based on floating point path metrics and needs investigations for in practical decoders with fixed point algorithms.
· Overall, it seems this application area for achieving ET benefits due to scrambling is really narrow.
Possible scrambling would be just one of many techniques being considered in NR for complexity/power consumption reduction for DL that requires multiple BD hypotheses, including group-common DCI, flexible CORESET configurations, flexible BD configuration, flexible BWP, etc. Since the CORESET configuration is being discussed in Scheduling/HARQ discussions, we prefer to leave the details of the scrambling initialization seed up the control channel session, as they would have more expertise into the parameters associated with different CORESETs and search spaces to make suitable decisions (e.g. the scrambling initialization seed may be a cell ID, virtual cell ID, or C-RNTI, or any value X that is configured either for the CORESET or for the search space). Based on the above discussions with regards to complexity and performance, we think Alt1Frozen+Alt1Scrambling is simple, effective solution and should be adopted for NR PDCCH.
Proposal 3: Frozen bit values are set to 0 for Polar code.
Proposal 4: Gold sequence based scrambling is applied on the output of PDCCH. Details of scrambling initialization seed are up to the control channel session.
5. Segmentation to support larger UCI sizes
The maximum code size (N) for uplink control information is 1024. It was noted previously that the payloads in the range of up to 500~600 bits may need to be considered on the uplink. There are two ways to address the large payloads on the uplink.
Option 1: Use single codeword and operate with a Polar code of larger code rate
Option 2: Use code block segmentation for segmenting UCI into multiple segments
We think the principle of segmentation can also be applied to Polar code, analogous to the dual-Reed-Muller used since Rel-10. In this case, the information block can be segmented based on the information block size threshold, and the total bits that are available for transmission (i.e. the codeword size M). If the effective code rate K/M is low, and the Polar code rate K/Nmax is large, then code block segmentation can be applied such that the Polar code rate for each segment is (K/2)/ Nmax, and each code block can achieve lower “effective Polar coding rate”.
The segmentation should be performed so that the same each segment uses the same Polar code data and frozen bit mapping and rate-matching operation to simplify encoding and decoding and the triangular channel interleaving, i.e for each segment. This would mean zero padding may have to be inserted in addition to data and frozen bits on the Polar code input.
[image:]				[image:]
Figure 5. Example showing unequal code block sizes (K1, K2) vs equal code block size (K1).
The support code block sizes for segmentation can also be made slightly coarse for reducing storage complexity (e.g. SSC decoding schedules, etc). Examples of supported block sizes for Polar code could be as follows and the segment sizes may be confined to only the supported block sizes for Polar code.
1. Ksupported is block sizes that are multiples of 4 and lie within a range Kmin and Kmax, e.g. 24 and 128
2. Ksupported is block sizes that are multiples of 4 and lie within a first range Kmin1 and Kmax1, e.g. 24 and 128 or block sizes that are multiples of 8 and lie within a second range Kmin2 and Kmax2, e.g. 128 and 256
3. Code block segmentation can start when the effective code rate K/M is 1/5 and K is greater than 256 or 300.
Given the maximum UCI payload from MIMO session is around 576, we think it is reasonable to cap the maximum segment size to around 300 bits, which would lead to a maximum of two code blocks for UCI, which will simplify implementations. Furthermore, similar to LDPC segmentation, it is desirable to further reduce complexity by having equal code block size and same Polar data and frozen bit mapping and rate-matching operation through support of zero-padding. Thus, we make the following proposals for UCI support of larger block sizes.
Proposal 5: Code block segmentation is support for UCI transmission with payload larger than KCB-Polar≥[300] & total number of coded bits M > [5* KCB-Polar].
Proposal 6: Maximum number of code blocks for encoding a UCI is two.
Proposal 7: Code block segmentation for UCI ensures that each segment uses same Polar code data and frozen bit mapping and rate-matching operation.
Proposal 8: Code block segmentation for UCI supports zero-padding, and coarse code block sizes (multiples of 4 or 8).

6. Location of the uplink channel interleaver
In last meeting, the following working assumption was made with respect to the location of the bit-interleaver for LDPC.
Working Assumption:
· The interleaver is located after the whole rate matching functionality including repetition
· To be confirmed at RAN1#90bis.

We prefer to change the WA and propose that the interleaver is located prior to repetition in R1-1717404. We also think the same principle should be applied to simplify uplink channel interleaver implementation. While it is feasible to support interleaver location after the whole rate-matching functionality, it would simpler for placing the interleaver before repetition as it can simplify the interleaver operation for cases where the coding rate for a transmission can be extremely low. This scenario applies for UCI on PUSCH (i.e. Polar code).
Note that for the uplink triangular channel interleaver for Polar code, while the circular buffer rate-matching operation is limited to maximum size (N = 1024) the channel interleaver can span upto 14 (symbols/slot) * 3300 (REs/symbol), which is quite a large triangle. In principle, implementation based solutions could identified, but it seems such unnecessary complexity could be avoided by adopting a very simple change in the specification i.e. placing interleaver prior to repetition.
Proposal 9: The interleaver uplink is placed after the rate matching functionality and prior to repetition, and the maximum interleaver span is the circular buffer size for the codeword.

7. Conclusions
In this contribution, we have discussed some aspects related to Code construction and make the following proposals and observations:
CRC masking
· Proposal 1: CRC attached to a DCI message is masked with RNTI corresponding to the DCI message.
· Proposal 2: CRC bits towards the end of the decoding order are masked with RNTI.
Scrambling of PDCCH
· Observation 1: UEID-based scrambling bits does not provide any benefit for the cases in typical system operation when decoder input is pure AWGN or random QPSK.
· Proposal 3: Frozen bit values are set to 0 for Polar code.
· Proposal 4: Gold sequence based scrambling is applied on the output of PDCCH. Details of scrambling initialization seed are up to the control channel session.
Support for large payload UCI payload sizes.
· Proposal 5: Code block segmentation is support for UCI transmission with payload larger than KCB-Polar≥[300] & total number of coded bits M > [5* KCB-Polar].
· Proposal 6: Maximum number of code blocks for encoding a UCI is two.
· Proposal 7: Code block segmentation for UCI ensures that each segment uses same Polar code data and frozen bit mapping and rate-matching operation.
· Proposal 8: Code block segmentation for UCI supports zero-padding, and coarse code block sizes (multiples of 4 or 8).
Uplink triangular interleaver location
Proposal 9: The interleaver uplink is placed after the rate matching functionality and prior to repetition, and the maximum interleaver span is the circular buffer size for the codeword.
8. References
[1] R1-1711917, Chairman's notes of AI 5.1.4 on channel coding, RAN1-NR#2, Jun 2017
[2] R1-1712256	Enhancement of Early Termination by placing UE-ID on Frozen Bits	Tsofun Algorithm
[3] R1-1713316	Blind Detection with Polar Codes	McGill University
[4] R1-1713317	Early stopping of blind detection with distributed CRC	McGill University
[5] R1-1713966	Scrambling design for Polar codes	NTT DOCOMO, INC.
[6] R1-1714067	UE_ID Frozen Bit Insertion for DCI Early Block Discrimination	Coherent Logix
[7] R1-1714929	WF on UEID Frozen bit insertion for DCI Early Termination	Coherent Logix Inc., AT&T, NTT DOCOMO, Tsofun Algorithm, McGill University, Huawei, Nokia, LG Electronics, InterDigital, Tejas Network, CeWiT, IITM, IITH, Reliance
[8] R1- 1708316 Study of early termination techniques for Polar code, Intel, RAN1#89, May 2017
[9] R1-1708047, Early Termination of Polar Decoding, RAN1#89, Samsung, May 2017

[bookmark: _GoBack]
Annex A (EPDCCH scrambling initialization from LTE 36.211)
[bookmark: _Toc414281276]6.8A.2	Scrambling

The block of bits to be transmitted on an EPDCCH in a subframe shall be scrambled, resulting in a block of scrambled bits according to

where the UE-specific scrambling sequence is given by clause 7.2. The scrambling sequence generator shall be initialized with where is the EPDCCH set number.

7

image4.png
0LFSR-base(l scrambling. SNR = -4.65 dB, BLER=0.1

[

S}

e)
k51
g
=
kS
=9
b1

256

decoded bit

image5.png
l?)ﬂlar-enm(le(l scrambling. SNR = -4.65 dB, BLER=0.1

e)
k51
g
=
kS
=9
b1

256

decoded bit

image6.png
No scrambling. SNR = -4.65 dB, BLER=0.1

e)
k51
g
=
kS
=9
b1

256

decoded bit

image7.png
CRC

CRC

image8.png
CRC

CRC

image9.wmf
)

1

(

),...,

0

(

bit

-

M

b

b

oleObject1.bin

image10.wmf
)

1

(

~

),...,

0

(

~

bit

-

M

b

b

oleObject2.bin

image11.wmf
(

)

2

mod

)

(

)

(

)

(

~

i

c

i

b

i

b

+

=

oleObject3.bin

image12.wmf
)

(

i

c

oleObject4.bin

image13.wmf
ë

û

EPDCCH

,

ID

9

s

init

2

2

m

n

n

c

+

×

=

oleObject5.bin

image14.wmf
m

oleObject6.bin

image1.png
K+L K+L K+L Interleave .
CRC CRC | | DCRC L Frozen and Polar N Sub Block Eg—levell Scrambling
attachment masking Interleaver output of kernel [Interleaver anne Operation
DCRC Encoding and RM Interleaver

M

To modulation
mapper

image2.png
RNTI

AltlScrambling

LFSR

Received LLRs

Polar
Decoder

—

Payload
estimate

image3.png
RNTI

Alt2Scrambling

LFSR >

Interleave
LFSR output
and
remaining
zeros

Polar
kernel
Encoding

Sub Block
Interleaver
and RM

Bit-level
Channel
Interleaver

Polar
Decoder

—

Received LLRs

Payload
estimate

