3GPP TSG RAN WG1 Meeting #89 	 R1-1706972
Hangzhou, China, May 15 – 19, 2017

Agenda Item:	7.1.4.1.2
Source:	Huawei, HiSilicon
Title:	Throughput of LDPC codes
Document for:	Discussion and Decision

[bookmark: _Ref124589665][bookmark: _Ref71620620][bookmark: _Ref124671424]Introduction
In the RAN1#88bis meeting, the following agreements were reached [9].
Agreement:
The base graph design is selected from the following alternatives:
Alt 1: One base graph covering ~1/5 <= R <= ~8/9
Alt 1a: Two nested base graphs, where:
· Base graph #1
· Covers info block size K:
		Kmin1 <=K<= Kmax1, Kmin1 > Kmin, Kmax1 =Kmax
· Covers code rate R: ~1/3 <= R <= ~8/9; FFS whether Rmin can be ~1/5
· Base graph #2
· Nested within base graph #1
· Covers info block size K:
		 Kmin2 <=K<= Kmax2, Kmin2 =Kmin, Kmax2 < Kmax, where 512<=Kmax2<=2560
· Covers code rate R: ~1/5 <= R <= ~2/3
· Kbmax =16 is the starting point; lower values in the range 10<=Kbmax<16 are encouraged if feasible.
· The set of supported shift sizes is taken from the set of shift sizes supported by the base graph supporting Kmax
Alt 2: Two base graphs, where:
· Base graph #1
· Covers info block size K:
		Kmin1 <=K<= Kmax1, Kmin1 > Kmin, Kmax1 =Kmax
· Covers code rate R: ~1/3 <= R <= ~8/9; FFS whether Rmin can be ~1/5
· Base graph #2
· Not nested within base graph #1
· Covers info block size K:
	 	Kmin2 <=K<= Kmax2, Kmin2 =Kmin, Kmax2 < Kmax, where 512<=Kmax2<=2560
· Covers code rate R: ~1/5 <= R <= ~2/3
· Kbmax = 10 is the starting point; higher values in the range 10<Kbmax<=16 can also be considered if necessary.
· The set of supported shift sizes is taken from the set of shift sizes supported by the base graph supporting Kmax
BLER Performance is the main criterion for selecting between Alts 1, 1a and 2 (since it is already assumed that complexity is not increased significantly by the addition of a second smaller base graph); decoding latency (e.g. evaluated by the number of edges) should also be considered as an important criterion.
In this contribution we analyze the base graphs based irregular QC LDPC code from [4] in terms of latency and throughput using one and multiple cores for decoding.
Latency and throughput analysis
LDPC decoder architectures can be row-parallel or block-parallel ones. As shown in [3], the row parallel architecture for a large parity check matrix (PCM) is not practical because of the complex routing network needed for parallel processing of several PCM rows. In the analysis below we consider the block parallel decoder architecture with layered schedule similar to the architecture analysed in [1][2][3]. This architecture is suitable for both the Layered Offset Min-Sum and the Adjusted Min-Sum decoding algorithms. Block parallel architecture is obtained by partitioning the processing of a layer into multiple cycles. A layer may consist of one circulant row or, if a matrix has quasi row orthogonal (QRO) structure, a layer may include several non-overlapping groups of rows. For a block paralleled decoder, the following equations can be used to calculate the latency and the throughput:
 (1)
 (2)
where
· denotes the number of decoding iterations ();
· denotes the number of clock cycles required to do one decoding iteration;
· denotes the number of information bits ();
· denotes the operating frequency (GHz).
The parameter can be different for different implementations of the block-parallel decoder. In an ideal situation when all the computation resources are utilized 100% it can be calculated as follows:
 (3)
(see formula (2) from [3]), where
· denotes the parallelism level which may be smaller or bigger than the PCM circulant size ;
· denotes the codeword length (including the punctured nodes);
· denotes the average variable node degree (including the punctured and weight 1 nodes).
In practical decoder implementations for irregular LDPC codes it is not usually possible to achieve this ideal number of clock cycles per one iteration . Thus it makes sense to estimate the real value of .
If the parallelism level is greater than the circulant size , (e.g., where is some positive integer), the decoder may process several circulants in parallel. We suppose that this is done in the decoder by several () different check-node update (CNU) units, called cores (e.g., is used in [2]), and each such core can process one circulant block in the PCM per one clock cycle. Usually a pipeline scheme is utilized and the results of the circulant block processing (the sum of the corresponding channel LLR and the check-to-variable messages) are updated with clock cycles delay (e.g.,). Such decoding architecture is called a C-core block parallel decoder with pipeline delay.
Another way for increasing the parallelism level is using several decoders running in parallel, but this proportionally increases the memory size.
Increasing the number of cores C monotonically increases the throughput and proportionally decreases the latency. Thus the larger the maximal circulant size of the matrix is, the smaller is the number of cores needed to achieve the required throughput. At the same time, the smaller the number of cores is, usually the better the core utilization (percentage of time when the core is not in the pause state) can be achieved.
[image:]
Figure 1. Example of a conflict
For a multi-core decoder, the circulant rows of the PCM are processed by a certain order during the decoding iteration, and several cores process different circulant rows simultaneously to increase the throughput. In such multi-core case () when the input data (the sum of channel LLR and the check-to-variable messages) for core A is not ready because core B (it may be the same core) has not yet finished on the previous circulant row, a conflict (see [7]) occurs.
A conflict can be resolved in two different ways.
First workaround: input old information
In the first workaround, core A can use information from the previous iteration as its input. If conflicts are resolved in this way, formulas (3) and (1) with can still be used to estimate the latency. One of the ways to implement the first workaround is so called fast layered decoding algorithm described in [8]. This kind of decoder improves the throughput when the row layers in the PCM are not mutually orthogonal. However, as noted in [7], because the fast layered decoder uses old information rather than the updated information, it partially loses the benefit from layered decoding algorithm and converges slower than layered algorithm. In [8] it was shown that the fast layered decoding suffers about 0.2 dB and 0.1 dB performance loss compared to standard layered offset MS and BP decoding algorithms, respectively. Moreover it was shown in [8] that unlike the standard decoder the fast layered decoder needs two shift modules (such as QSN or Banyan network) per one core which amounts to a considerable increase of hardware complexity.
Second workaround: wait until a conflict is finished
Core A can wait (up to clock cycles) until core B finishes its work and the corresponding input data for core A is ready. In this case if some layer contains multiple conflicts with the previous layer, the same clock cycles are needed to be waited regardless of the number of cores. Thus, total number of clock cycles spent to resolve all conflicts is up to where denotes the number of layers that have at least one conflict with the previous layer (hereinafter we call them conflict layers).
For a -core () block parallel decoder and a PCM with conflicts, the following equation (4) as explained in [6] can be used to calculate a pessimistic (upper) estimate of the number of clock cycles per one iteration:
, (4)
where denotes the total number of conflict layers in the PCM.
It can be shown that by changing the order of processing circulants within a row some conflicts may be resolved. Nevertheless, some number of conflicts cannot be resolved by optimizing the decoding schedule.
The following formula (5) (see [8] for its explanation) gives an optimistic (lower) estimate for the number of decoding clock cycles per iteration:
 (5)
where
· denotes the number of non-empty circulants in the -th row of the PCM in the processing order;
· denotes the total number of non-empty circulants in the PCM, (the number of edges in the base graph);
· denotes the number of conflicts in the -th row of the PCM with the previous row in the processing order (the first processed row in the current iteration we compare with the last processed row from the previous iteration).
It can be shown via simulations that the performance degradation is negligible if all the conflicts occur only in the HW columns of the PCM. We indicate such a matrix as non-conflict code (NC). It is easily seen that in a matrix with NC-QRO structure all conflicts inside one layer can only occur in HW circulant columns. An example of NC-QRO matrix is shown in Figure 2 in [4]. A more comprehensive example of such NC matrix with QRO property can be found in the Excel spreadsheet in [4]. As observed in [5] the performance is not impacted by the limitation of NC-QRO structure.
Ideal latency estimation
Table 1 shows the number of non-empty circulants (the number of edges in the corresponding base graph) for codes with base graphs given in [4], normalized to the largest code block size (8448 for the large base graph and 2560 for the small base graph).
Table 1. Number of edges for base graphs in [4].
	Rate
	number of edges BGn#1
	Rate
	number of edges BGn#2
	Rate
	number of edges BG#1
	Rate
	number of edges BG#2

	1/3
	116352
	1/5
	52800
	1/3
	122880
	1/5
	49920

	2/5
	97536
	1/3
	34080
	2/5
	103680
	1/3
	29952

	1/2
	76800
	2/5
	28320
	1/2
	82176
	2/5
	24576

	2/3
	52608
	1/2
	22240
	2/3
	56064
	1/2
	18944

	3/4
	44544
	2/3
	14880
	3/4
	46848
	2/3
	12288

	5/6
	35712
	
	
	5/6
	36480
	
	

	8/9
	30336
	
	
	8/9
	30336
	
	

Observation1: The normalized number of edges of BGn#1 is smaller than that of BG#1.
Observation2: The normalized number of edges of BG#2 is smaller than that of BGn#2.
Real latency estimation
Table 2 below shows the number of clock cycles per 1 decoding iteration needed for BG#1 of alt.1a with multi-core block parallel decoder for number of cores C=1,2,3,4 and pipeline delay np=2:
Table 2. Number of clock cycles per iteration for BGn#1 in [4], estimated using formula (5).
	Rate
	NC-QRO BGn#1,

	
	Lower latency estimate, clocks per iteration

	# cores
	1
	2
	3
	4

	8/9
	79
	41
	30
	24

	5/6
	93
	48
	34
	27

	3/4
	116
	60
	42
	33

	2/3
	137
	69
	48
	38

	1/2
	200
	102
	70
	54

	2/5
	254
	129
	88
	68

	1/3
	303
	153
	104
	80

	1/5
	475
	239
	162
	123

From Table 2 it can be observed that due to NC-QRO structure, the number of clock cycles per iteration for a decoder with C cores is close to total number of edges W divided by C, which corresponds to theoretically minimal latency for the given parallelism level.
Observation 3: NC-QRO structured LDPC code can reduce conflicts when using multiple cores and improve latency without performance degradation.
Throughput for lower code rates
[bookmark: _GoBack]Peak rate is one of the most important KPI for NR eMBB scenario. To achieve 20Gbps peak rate, the largest RB number and highest MCS level (typically the highest modulation order and code rate) should be used. From a system aspect, for the lower MCS levels, the system throughput should be smoothly decreased. Likely NR eMBB will have similar spectral efficiency range as LTE at least for lower MCS, so here we refer to the current LTE 256QAM TBS table to analyze the peak throughput requirement at each MCS level. Refer to the transport block size table in 3GPP TS 36.213, Table 7.1.7.2.1-1: in Table 3 in the Appendix we show the maximum throughput for each MCS level, normalized to 20Gbps peak rate.
The normalized throughputs for all code rates are plotted in Figure 2 as black curves. Note that some code rates are used for different MCS levels (e.g. MCS 15 & 20), the maximum throughput of these MCS levels are selected as the throughput requirement for that code rate.
According to Table 3 and Figure 2, the channel code should not only achieve 20Gbps at highest rate, but also meet the throughput requirement at different rates. LTE turbo codes always decode at rate 1/3 independently of the transmitted rate. Thus all the code rates have the same throughput and can easily achieve throughput requirements at all MCS levels as long as the peak throughput is achieved. For LDPC, the throughput is greatly affected by the code rate. The decoding complexity of LDPC increases as the code rate decreases [11], which results in a degradation in throughput. Hence, LDPC code should ensure all code rates can satisfy the corresponding throughput requirements.
In Figure 2, the throughput estimates derived from Table 2 using Formula (2) for the code with base graph BGn#1[4] are given. Horizontal axis corresponds to the coding rate and vertical axis shows the throughput estimates of the corresponding codes, which is based on lower estimates of the decoding latency (assuming pipeline delay and clock frequency).
If the parity check matrix has NC-QRO property, due to the partial orthogonality of the matrix and low number of conflicts there is no significant complexity increase when the matrix is extended to lower code rate. Thus, for number of cores NC-QRO LDPC can always meet the system throughput requirements, especially for code rates 1/2 – 5/6.
Observation 4: The throughput of NC-QRO matrix with base graph BGn#1 can achieve system requirement for all code rates.
[image:]
[bookmark: _Ref477887857][bookmark: _Ref477887848]Figure 2. Throughput at different code rates
Conclusions
This contribution discusses latency and throughput for the base graphs presented in [4].
Observation1: The normalized number of edges of BGn#1 is smaller than that of BG#1.
Observation2: The normalized number of edges of BG#2 is smaller than that of BGn#2.
Observation 3: NC-QRO structured LDPC code can reduce conflicts when using multiple cores and improve latency without performance degradation.
Observation 4: The throughput of NC-QRO matrix with base graph BGn#1 can achieve system requirement for all code rates.
References
[bookmark: _Ref471726040]R1-1610472: “Evaluation of Adjusted-Min-Sum LDPC Decoder and Complexity Aspects of Permutation Networks”, Huawei, HiSilicon
[bookmark: _Ref471726042]R1-1610139: “Efficient Channel Coding Implementations for EMBB”, Qualcomm
[bookmark: _Ref471725833]R1-1700246, “Complexity, throughput and latency analysis on LDPC codes for eMBB”, ZTE
[bookmark: _Ref471565323]R1-1706970, “LDPC design for eMBB data”, Huawei, HiSilicon
[bookmark: _Ref471747676]R1-1706971, “Performance evaluation of LDPC codes”, Huawei, HiSilicon
[bookmark: _Ref473717837]R1-1700093, “Implementation aspects of LDPC codes”, Huawei, HiSilicon
[bookmark: _Ref477417547]R1-1700111, “Implementation and Performance of LDPC Decoder”, Ericsson
R1-1701707, “Implementation aspects of LDPC codes”, Huawei, HiSilicon
[bookmark: _Ref477949786]Chairman’s Notes, RAN1#88bis meeting, Spokane, USA, 3rd – 7th April 2017

Appendix
Table 3. TBS table of LTE and normalized throughput
	ITBS
	110RB

	
	TBS
	Rate
	Code Block Number
	Throughput
(Mbps)
	Normalized Throughput
(Gbps)

	0
	3112
	0.1179
	1
	3.112
	0.636

	1
	4008
	0.1518
	1
	4.008
	0.819

	2
	4968
	0.1882
	1
	4.968
	1.015

	3
	6456
	0.2445
	2
	6.456
	1.319

	4
	7992
	0.3027
	2
	7.992
	1.633

	5
	9528
	0.3609
	2
	9.528
	1.947

	6
	11448
	0.4336
	2
	11.448
	2.339

	7
	13536
	0.5127
	3
	13.536
	2.765

	8
	15264
	0.5782
	3
	15.264
	3.118

	9
	17568
	0.6655
	3
	17.568
	3.589

	10
	19080
	0.3614
	4
	19.08
	3.898

	11
	22152
	0.4195
	4
	22.152
	4.526

	12
	25456
	0.4821
	5
	25.456
	5.201

	13
	28336
	0.5367
	5
	28.336
	5.789

	14
	31704
	0.6005
	6
	31.704
	6.477

	15
	34008
	0.6441
	6
	34.008
	6.948

	16
	35160
	0.4439
	6
	35.16
	7.183

	17
	39232
	0.4954
	7
	39.232
	8.015

	18
	43816
	0.5532
	8
	43.816
	8.952

	19
	46888
	0.592
	8
	46.888
	9.579

	20
	51024
	0.6442
	9
	51.024
	10.424

	21
	55056
	0.6952
	9
	55.056
	11.248

	22
	59256
	0.7482
	10
	59.256
	12.106

	23
	63776
	0.8053
	11
	63.776
	13.029

	24
	66592
	0.8408
	11
	66.592
	13.605

	25
	71112
	0.8979
	12
	71.112
	14.528

	26
	75376
	0.9517
	13
	75.376
	15.399

	26A
	71112
	0.8979
	12
	71.112
	14.528

	27
	73712
	0.698
	13
	73.721
	15.061

	28
	76208
	0.7217
	13
	76.208
	15.569

	29
	81176
	0.7687
	14
	81.176
	16.584

	30
	87936
	0.8327
	15
	87.936
	17.965

	31
	90816
	0.86
	15
	90.816
	18.554

	32
	93800
	0.8883
	16
	93.8
	19.163

	33
	97896
	0.927
	16
	97.896
	20.000

	33A
	97896
	0.927
	16
	97.896
	20.000

image1.png
328]152] 346] 70] 201] 181] 170] 183] 334] 201

316 1941370 91| 360|279 223[290[306] 1

59] 3241 36 75[358 160 & T
Core B\ 108 | 196 1] 67
Bo 59]339] 270 {y
7T
17 15173'___________—___'3'43 T0Y

69— | 9[314

Core A ==

image2.emf
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Rate

5

10

15

20

T

h

r

o

u

g

h

p

u

t

,

G

b

p

s

LTE throughput scaled to 20 Gbps

NC-QRO BG#1, block parallel decoder with 1 core

NC-QRO BG#1, block parallel decoder with 2 cores

NC-QRO BG#1, block parallel decoder with 3 cores

NC-QRO BG#1, block parallel decoder with 4 cores

