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1. Introduction 
In this contribution, we provide discussions and views on the following 
· number of base graphs, 
· supported code block sizes for LDPC code design
· zero-padding 
· IR-HARQ redundancy versions
2. Number of base graphs
In previous meetings, good throughput and performance for all coding rates was agreed. Therefore, NR LDPC design should be optimized for full set of block sizes and coding rates. It can be achieved by using of several number of base graphs. Though it is desirable to reduce the number of base graphs, it should also be ensured the design for NR is not compromised.
In RAN1#88bis meeting, regarding number of supported base graphs was agreed to choose between three alternatives:
Alt 1:	One base graph covering ~1/5 <= R <= ~8/9.
Alt 1a:	Two nested base graphs.
	Base graph #1 covers info block sizes until Kmax and coding rates R: ~1/3 <= R <= ~8/9;
	Base graph #2, nested within base graph #1, covers info block sizes until 512<=Kmax2<=2560
	and coding rates R: ~1/5 <= R <= ~2/3.
Alt 2:	Two not nested base graphs with the same block sizes and coding rates coverage.
The range of data rates, block sizes, coding rates is widely varying. Therefore, it is desirable to support different ranges with different matrices optimized for different properties. For instance, at the large block sizes/code rates, where peak data rate is important, the base graph design can be optimized separately compared to the small block lengths and low coding rates. 
It is well-known that the performance of an LDPC code is determined by degree distribution, threshold, cycles and trapping sets quantity. For example, in [12] was shown that trapping sets configuration can strongly affect the coding performance for LDPC codes of very short length.
Our preference is to support two not nested base graphs, each of which can be optimized and evaluated independently for different range of block sizes/coding rates with due regard to different parity check matrix characteristics requirements. Tying them together via nesting property could imply any small change in either base graph will require reevaluations of both base graph, which will become challenging, especially with the tight timeline for completion of LDPC base graph design.
Proposal 1: Adopt two not nested base graphs (Alt 2) for NR LDPC.
3. Shift sizes and lifting method for LDPC design
In last meeting, the following working assumption was made regarding supported set of shift sizes.
The base graph supporting Kmax should support the following set of shift sizes Z, where :
	Z
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	4
	6
	10
	14
	18
	22
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	12
	20
	28
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	240
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	224
	288
	352
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It is preferable to avoid having to specify a lot of prototype matrices in the specification. For compact design, based on the agree table, a maximum of eight prototype matrices are defined (one each for the maximum shift size in each column), and the prototype matrices for each of the other shift sizes in the same column are implicitly derived using a scaling method such as modulo scaling, flooring operation, etc. in the table, we show with the same color the shift sizes whose prototype matrices are derived from the prototype matrix for the bold shift size. If design with two base graphs is agreed, the same principle is applied for that design also. 
4. Code block sizes supported for NR
The flexible LDPC design can support any block size using a combination of zero-padding and coarse shift granularity that were already agreed in previous meetings. However, it is also important to identify the set of block sizes that are to be used for encoding and transmitting code blocks derived from the LDPC code design envisioned for NR. In particular, it is desirable to perform rigorous performance evaluations to ensure good performance of the supported code block sizes. Fortunately, the minimum set of information block granularity for evaluation (that was agreed in previous RAN1 meeting#88) could be used as a starting point for the supported code block sizes. 
	Kmin<=K<=512 
	528<=K<=1024 
	1056<=K<=2048 
	2048<=K<=6144
	6144<=K<=8192

	8
	16
	32
	64
	128



Note since the largest information block length is 8448 per the Working assumption (in last RAN1), some additional code block sizes need to be added at the upper range between 8192 and 8448 (e.g. in granularity of 128). 
An alternative is to allow the set of code block sizes to comprise either a subset (e.g. only allow native LDPC information block lengths (ka …..kb) x Z ) or a super-set (e.g. allow all block lengths that are multiples of 8 between Kmin and 8448), but then the parity-check matrix proposals may need to be evaluated at such code block sizes to ensure performance is maintained. 
Per-code block functions:
Following the code block segmentation (and any possible group CRC attachment), the remaining operations such as zero-padding, LDPC encoding, rate-matching (including a circular buffer operation with redundancy version) and modulation symbol mapping should all be performed at code block level. This is very helpful for a pipelined decoding architecture, and also supports flexible implementations (e.g. one or more parallel decoders can be used). 
5. Zero-padding 
In the Adhoc meeting in Jan 2017, the following was agreed with regards to shortening. However, there was a working assumption on the location of the filler bits (or zero-padding). We propose to confirm the working assumption. Furthermore, we also propose to set the value of the filler bits F to 0, in line with the conventional shortening/zero-padding procedure (e.g. also used in LTE turbo code). Setting the filler bit value to 0 can also benefit in LDPC implementations (encoding/decoding) as the edges correspond to such filler bits could be removed from the Tanner graph without any impact on performance.

Agreement:
· Shortening is applied before LDPC encoding when necessary
· Working assumption: Filler bits F are attached at the end of info block B to form vector U = [B F] 
· Can be verified at RAN1#88
· Vector U is the input to LDPC encoding
· The filler bits F are not transmitted

Proposal 2: Confirm the working assumption from RAN1#Adhoc i.e. filler bits F are attached at the end of info block B to form vector U = [B F]
Proposal 3: Filler bits F are set to 0.
6. IR-HARQ redundancy versions
In the Adhoc meeting in Jan 2017, it was agreed to support LTE-like circular buffer rate-matching with redundancy versions for IR-HARQ. Since adaptive HARQ is supported for NR, the redundancy version information may be transmitted along with the resource allocation information within the DCI. We propose to support a maximum of four redundancy versions for NR. There are many ways to determine the starting point for the redundancy versions (e.g. see [13]). We think the LTE-like redundancy version definition could be suitable for NR also. Since LDPC code design is aligned closely with the shift size, for simplicity, it is further proposed that the starting point in the circular buffer can be determined based on the base matrix (or shift size) associated with the parity-check matrix used with the circular buffer.
Proposal 4: Maximum number of redundancy versions supported for LDPC HARQ is four.

7. Conclusion
In this contribution, we provide an overview of number of supported base graphs, supported block sizes, lifting sizes and zero-padding aspect for NR LDPC design. 
Proposal 1: Adopt two not nested base graphs (Alt 2) for NR LDPC.
Proposal 2: Confirm the working assumption from RAN1#Adhoc i.e. filler bits F are attached at the end of info block B to form vector U = [B F].
Proposal 3: Filler bits F are set to 0.
Proposal 4: Maximum number of redundancy versions supported for LDPC HARQ is four. 
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