3GPP TSG RAN WG1 Meeting #89 	 R1-1708157
Hangzhou, China, 15th - 19th May 2017

Agenda Item:	7.1.4.2.1.2
Source:	Huawei, HiSilicon
Title:	Analysis of the sequence of polar codes
Document for:	Discussion and Decision

[bookmark: _Ref124589705][bookmark: _Ref129681862]Introduction
In the 88-bis meeting, at least the following factors relevant for evaluating the sequences are [88-bis chairman’s note] considered:
1. Performance
1. Information granularity
1. Compatibility with rate matching
1. Complexity
1. Latency
It is clarified that an evaluation of a sequence for a polar code is essentially a discussion of a bit-position-allocation algorithm that determines bit positions or sub-channels for K information bits. Such an algorithm can be roughly divided into types to include an ordered sequence and a rate-matching scheme:
· Sequence-based bit allocation algorithm that adapts a rate-matching scheme to one static ordered sequence [11-7-8-10].
· [bookmark: _GoBack]Rate-matching-based bit allocation algorithm that adapts a sequence to a static rate-matching scheme [11].
Although both take into account the compatibility between ordered sequence and rate-matching scheme, they differ in the complexity and latency:
· A sequence-based bit allocation algorithm simply reads K most reliable bit positions consecutively from a static table.
· A rate-matching-based bit allocation algorithm recursively updates channel capacity (WN) by a KN/M, splits it into WN/2+ and WN/2-, and computes KN/2+ and KN/2- from N to N/2.
This contribution focuses on the performance comparison and evaluation of the two algorithms above. Essentially equivalent to each other at a high level, both bit allocation algorithms should have very similar coding performance. In this situation, implementation complexity and latency would rise up to the priority factors for sequence selection.
Note that this contribution will not include the evaluation of the multi-sequence design for the following reasons:
· No concrete multi-sequence-based bit allocation algorithm has been specified in such a detail for a complete fine-granularity simulation.
· Multi-sequence-based bit algorithm can be regarded as a natural enhancement to single-sequence-based one. No significant coding gain has been reported yet.
Discussion
Ordered Sequence and Rate-Matching Scheme
As suggested in [5], a DE-GA algorithm with a given rate-matching scheme is a performance baseline for a polar code (K, M) design in the AWGN channel. In this algorithm, a rate-matching scheme is represented as a puncturing or shortening set/vector P of size (N-M). An algorithm for density-evolution using a Gaussian approximation (DE-GA) takes this set P to recursively compute the reliabilities of all M bit positions from the last stage to the first. In the end, it sorts the reliabilities of the M bit positions, and it allocates the K most reliable ones to the K information bits. Such a DE-GA algorithm reveals some correlation between sequence and rate-matching scheme for a polar code, and indicates that this correlation has impact on the coding performance.
However, sequence and rate-matching scheme have their own impact on the coding performance of a polar code (K, M), that is, the waterfall curves of the block error probability PB respectively.
· The impact of a sequence is related to an overall reliability of the information bits: if the K information bits take less reliable bit positions, the PB waterfall curve is offset to the right (higher SNR).
· The impact of a rate-matching scheme is related to the polarisation exponent of the polar code, because different rate-matching schemes result in different exponents: the larger the exponent is, the steeper is the slope of the PB curve.
Appendix-A reviews shortening and puncturing methods for polar codes.
An upper bound of the block error probability (PB) is related to a sequence, a rate matching scheme, and a channel capacity (W ~ SNR):
											(1)
where:
Z(W) is Bhattacharyya parameter of the genuine channel (before polarization),
s is the minimum bit position index in the information bit set,
Ds is is the component of the partial distance profile corresponding to bit position s.
This upper bound follows Lemma 13 of [2].
Observation-1: A sequence, a rate-matching scheme, and their correlation contribute to the coding performance of a polar code (K, M).
Now thatn it is impracticable to run a DE-GA algorithm online (on-the-fly), two realistic tradeoff would be:
· Adapt rate-matching schemes to a fixed sequence
· Adapt sequences to a fixed rate-matching scheme
At a higher level, both are equivalent for coding performance. In the following sections, we will analyze, evaluate, and compare the two algoritms.
Sequence-based Bit Allocation Algorithm
Single-Sequence Design
A sequence-based bit allocation algorithm adapts more than one rate-matching scheme to one single static sequence in terms of coding rate R, code length M, etc. This requests the sequence design to support a wide range of SNRs and coding rates, various candidate rate-matching schemes, but also preferably results in low space and description complexity.
One example is the PW (Polarization Weight) sequence whose design is detailed in [14]. This sequence design consists of three parts:
· Orders are constructed from the UPO (universal partial order);
· Orders are synthesized from a large number of simulation trials with various SNRs, rate-matching schemes, and different decoders;
· Orders are the result of a trade-off on overall nested and symmetric features.
Another example is the SS-Sequence [12] resulting (or synthesized) from a large number of trial-and- adjustment iterations. Both sequences have the common set of relations governed by UPO, assume an overall nested feature, and exhibit a very similar coding performance under both SC decoding and SCL decoding if exactly the same rate-matching scheme is applied.

[image:]
List = 8 SCL decoder

[image:]
SC decoder
Figure 2	Performance Comparison between PW Sequence and SS Sequence in a fine granularity
Two sequences following the UPO and trained through a large number of simulations tend to have a similar coding performance.
Adaptive Rate-Matching Schemes
[6] simulated a number of rate-matching schemes with a PW sequence. [7] and [8] proposed an adaptive rate-matching scheme over a PW sequence. All lead to the observation that a puncturing scheme seems to have the best performance for low coding rates R, a bit-reversal shortening scheme for mid-range coding rates R, and a shortening scheme for high coding rates R.
This observation can be explained by the exponent of a polar code with a rate-matching scheme [2].
In fact, a polar code with a rate matching scheme can be described as a specific kernel. For analysis purpose, this kernel can be seen as the composition of elementary ones. The multi kernel construction gives a framework to analytically characterize the performances of such a scheme [3].
Appendix-B and part of appendix C provide a theoretical analysis of the relationship among exponent value, multi-kernel representation, and rate-matching scheme.
Moreover, it is proven in Appendix C, that rate matching methods which can be represented in a multi-kernel way (such as bit reversal shortening) produce polar codes with no error-floor (since they enjoy a strictly positive exponent).
Observation-2: For a sequence-based bit allocation algorithm, coding performance differences of various rate-matching schemes are related to their degrees of the polarization. Some rate-matching schemes can ensure the absence of an error-floor.
Rate-Matching-Based Bit Allocation Algorithm
Fix a Rate-Matching Scheme
To explain why the bit allocation algorithm described in Appendix-B of [13] fixes the rate-matching scheme, we revisit how this algorithm splits the capacity from CN to CN/2- and CN/2+.
The algorithm assumes two mutual capacity inputs: C and α∙C. An overall capacity (C+ αC) is decomposed into and as
=
=+
where = is a heuristic correction term.
The value α is the only information related to a rate-matching scheme. If α approaches 1, the capacity decomposition reduces to the BEC decomposition:
=
=+

The decomposition thus loses the information of a rate-matching scheme. In fact, some rate-matching schemes such as bit-reversal shortening, reliability-based puncturing/shortening, and periodic puncturing/shortening have α close to 1.
[image:]
Figure 3	Disastrous Points of FRANK+MTK’s Adaptive Rate-Matching Method with CA-Polar Code List=8
Observation-3: In a rate-matching-based bit allocation algorithm, the poor performance of the bit-reversal shortening scheme is mainly due to the fact that this bit allocation algorithm fails to catch the rate-matching scheme information during each decomposition; it is not due to the bit-reversal shortening scheme itself.
In order to keep non-one α value, this bit-allocation algorithm fixes its targeted rate-matching schemes as natural puncturing and natural shortening. Therefore this bit-allocation algorithm is rate-matching-based.
Adaptive Sequence
An example of this bit allocation algorithm is given as below:
[image:]
Figure 4	Example of Capacity Split from N to N/2 with Block Puncturing Scheme
In decomposing a capacity, this algorithm needs to update the following values:
· WN ≈ CN ≈ KN/M
· α = C1N/C2N
· δ = -|C2N-0.5|/32+1/64
· KN/2+ = KN∙ CN/2+ /(CN/2+ + CN/2-)
· KN/2- = KN∙ CN/2- /(CN/2+ + CN/2-)
From N to N/2, the procedure is:
R = KN/M -> approximate mutual capacity CN by R -> approximate WN by CN -> correction item δ -> Decomposition for CN/2 + and CN/2 -> From to obtain KN/2+ and KN/2-
Importantly, this procedure implies two assumptions:
· The channel capacity WN is approximated by the coding rate R. Doing so is valid for very large code lengths only. This explains why the proposed decomposition stops at Nref = 64.
· The capacity decomposition is a corrected BEC one, hense has its problems to catch the specific properties of the Gaussian channel.
To verify these two assumptions, we conduct a fine-granularity simulation of this bit allocation algorithm with an SC decoder, which is supposed to be a reliable tool to gauge an algorithm.
[image:]
Figure 5	Disastrous Points of online bit allocation with natural puncturing and shortening with SC decoder
Observation-4: A rate-matching-based bit allocation algorithm may suffer from some assumptions that enable a dynamic sequence generation.
Sequence-based vs Rate-Matching-based
Coding Performance
We compare with List = 8 decoder and CA-polar code (19-bit CRC).
[image:]
Figure 6	Sequence-Basic vs Rate-Matching-Basic
Observation-5: Sequence-based and rate-matching-based bit allocation algorithms have a comparable performance.
Complexity
If the two algorithms have similar performance, the implementation complexity will be the important criterion. Table 1 below compares the computational complexities:
	
	Rate-Matching-Based
	Sequence-based

	Construction Type
	Online + Offline
	Offline

	Computational Complexity
for each splitting
	10*ADD+5*DIV+5*MUL+
Counting Available Channel #*
	0

	# of Online splitting
	N/Nref-1
	0

	# of Sequence Reading
	N/Nref
	1

	Minimum Online Latency
	-
	0

Table 1	Complexity Comparison
Observation-6: The sequence-based bit allocation algorithm has lower complexity than the rate-matching-based one when both reach a similar performance.
[bookmark: _Ref124589665][bookmark: _Ref71620620][bookmark: _Ref124671424]Conclusion
Observation-1: A sequence, a rate-matching scheme, and their correlation contribute to the coding performance of a polar code (K, M).
We compared, in this document, two types of bit-allocation algorithms:
· a bit-allocation algorithm that is based on a sequence,
· a bit-allocation algorithm that is based on a rate-matching method.
Observation-2: For a sequence-based bit allocation algorithm, coding performance differences of various rate-matching schemes are related to their degrees of the polarization. Some rate-matching schemes can ensure the absence of an error-floor.
Observation-3: In a rate-matching-based bit allocation algorithm, the poor performance of bit-reversal shortening scheme is mainly due to the fact that this bit allocation algorithm fails to catch the rate-matching scheme information during each decomposition rather than bit-reversal shortening scheme itself.
Observation-4: A rate-matching-based bit allocation algorithm may suffer from some assumptions that enable a dynamic sequence generation.
Observation-5: Sequence-based and rate-matching-based bit allocation algorithms have a comparable performance.
Observation-6: Sequence-based bit allocation algorithm is much simpler than rate-matching-based one when both reach a similar performance.
References
[bookmark: _Ref457925438] V. Bioglio, F. Gabry and I. Land, “Low-Complexity Puncturing and Shortening of Polar Codes,” WCNC 2017 - Polar Coding in Wireless Communications: Theory and Implementation.
 S. B. Korada, E. Sasoglu and R. Urbanke, “Polar Codes: Characterization of Exponent, Bounds, and Constructions,” IEEE Trans. On Inform. Theory, Dec. 2010.
[3] F. Gabry, V. Bioglio, I. Land and J.-C. Belfiore, “Multi-Kernel Construction of Polar Codes,” ICC 2017, arXiv:1612.06099
[4] V. Bioglio, F. Gabry, I. Land and J.-C. Belfiore, “Minimum-Distance Based Construction of Multi-Kernel Polar Codes,” arXiv:1701.07616
[5] Huawei/Hisilicon, “Polar codes - encoding and decoding,” 3GPP R1-164039.
[6] Ericsson, “Performance Comparison of Rate Matching Schemes for Polar Codes,” 3GPP R1-1704318.
[7] MediaTek Inc., “Comparison and optimization of Polar code rate matching,” 3GPP R1-1704460.
[8] ZTE, ZTE Microelectronics, “Rate matching of polar codes for eMBB,” 3GPP R1 1704385.
[9] Qualcomm, “Polar Coding Construction and Rate Matching Impact on Complexity and Latency,” 3GPP R1-1705632.
[10] Docomo, “Rate matching design of Polar codes,” 3GPP R1-1705759.
[11] Huawei/Hisilicon, “Rate matching for polar codes,” 3GPP R1- 1705086.
[12] R1-1705425, Design of a Nested Sequence for Polar Codes, Samsung
[13] R1706130, Frank polar construction nested extension design of polar codes based on mutual infomoramtion, Qualcomm
[14] R1-1705084, Theoretical analysis of the sequence generation, Huawei, HiSilicon

Appendix-A: Shortening and Puncturing
Sequences and puncturing sets are connected. In fact, punctured bits have zero reliability, hence these bits are completely unreliable for a decoder. When a decoder encounters such an unreliable position, its value cannot be resolved, and a decoder injects an LLR of value 0. This unreliability is eventually projected to bit positions or sub-channels, creating incapable bit positions, i.e., positions on which it is impossible to take a non-random hard decision. The number of the incapable bit positions is equal to the number of punctured bits. The incapable bits created by the puncturing set P can be found by e.g. DE/GA.
Differently from other codes, polar codes can be shortened using a particular technique. In practice, a code can be shortened by P bits if it is possible to find P bits of the codeword that are independent on the information bits. This gives an ulterior constraint in the code design. However, the presence of frozen bits naturally gives bits that may be independent of the information bits. In fact, if P code bits are linear combinations of frozen bits only, they can be shortened since they are all zero. Bit-reversal shortening naturally has this property, and gives a simple way to fulfil the new constraint given by the shortening technique. At the decoder side, the channel LLRs for the shortened code bits are initialized with sufficiently large positive values (in theory with infinity), and the decoder of the mother code is applied.
As a result, shortened polar codes have a construction which is similar to the one of punctured polar codes. Due to this reason, there has been some confusion in the literature on the nature of shortened polar codes, in particular shortening was sometimes referred to as puncturing. We recall here that a code is shortened when code bits are forced to take fixed values (typically zero) by appropriate encoding and then eliminated, while a code is punctured when code bits with non-fixed values are eliminated. As a result, while both shortening and puncturing reduce the length of the code, shortening also reduces the dimension of the code (the number of information bits).
More information can be found in [1].
Appendix-B: Multi-kernel representation
Multi-kernel polar codes are a generalized construction of polar codes based on mixing of kernels of different sizes over the same binary alphabet, in order to construct polar codes of any code length. By using kernels of different sizes in different stages, it is in fact possible to represent polar codes of code lengths that are not only powers of integers.
In their original Arikan construction, polar codes are based on the polarization effect of the Kronecker powers of the binary kernel matrix . However, polarization phenomenon is not restricted to the powers of the kernel , and kernels of larger sizes can be similarly used to design codes based on the polarization effect of any size of the form over various alphabets, where l is any integer number>=2 and n is number of stages. Multi-kernel polar codes make a step further, by mixing kernels of different dimension to represent a polar code of any length without puncturing or shortening.
[image: C:\Users\v00322176\Desktop\Capture.PNG]
As an example, we show the Tanner graph of a multi-kernel polar code of length obtained by mixing and kernels, with This multi-kernel polar code has transformation matrix . Note that a different ordering of the kernels gives a different transformation matrix, as the Kronecker product is not commutative. In the Tanner graph it is possible to follow the evolution of the LLRs during the SC decoding of the code.
We recall that the code construction is more general, and multi-kernel polar codes mixing binary kernels of any size can be designed following the construction described in [3] or [4].
For some rate-matching schemes such as block puncturing, block shortening, and BIV shortening, its punctured code block can be represented by a mixing binary multi-kernel polar code without puncturing and shortening. Therefore, its polarization with a rate-matching scheme can be measured by the multi-kernel polar code too.
Appendix-C: Error floor of punctured/shortened polar code
The appearance of an error floor is strongly related to a rate-matching scheme that fixes the punctured/shorten bits and frozen bit positions. A polar code with a Bit-Reversal shortening and puncturing can be represented as a multi-kernel polar code. Multi-kernel polar codes do not suffer from error floors, just like Arikan’s polar codes. The absence of the error floor in Arikan’s kernels is related to a strictly positive error exponent which is directly linked to the partial distances of the kernel . For Arikan’s code construction, the error exponent is 0.5 which implies that the slope of the block error probability is 0.5 .
In multi-kernel polar codes, this is true for the same reason. As an example, an Arikan code of length 512, namely , can be shortened/punctured to a code of length 384, which results in a generator matrix . If you denote by the error exponent of the kernel and the error exponent of kernel , and and the number of occurrences of each of and in the generator matrix, then the error exponent of the overall code is given by

which is strictly positive if both and are strictly positive.

image3.emf
info Length

20 40 60 80 100 120 140 160 180 200

S

N

R

-8

-6

-4

-2

0

2

4

6

8

10

@BLER=0.001 QPSK/AWGN

FRANK,NATP, R=1/12

FRANK,NATP, R=1/6

FRANK,NATP, R=1/3

FRANK,NATP, R=1/2

FRANK,NATP, R=2/3

FRANK,MTKP, R=1/12

FRANK,MTKP, R=1/6

FRANK,MTKP, R=1/3

FRANK,MTKP, R=1/2

FRANK,MTKP, R=2/3

FRANK,BIES, R=1/12

FRANK,BIES, R=1/6

FRANK,BIES, R=1/3

FRANK,BIES, R=1/2

FRANK,BIES, R=2/3

FRANK,MTKS, R=1/12

FRANK,MTKS, R=1/6

FRANK,MTKS, R=1/3

FRANK,MTKS, R=1/2

FRANK,MTKS, R=2/3

image4.emf
W1

W2

Puncture

C1=mean(R1~R4)

C2=mean(R5~R8)

R1=0

R2=0

R3=R

R4=R

R5=R

R6=R

R7=R

R8=R

R=K/M,M=6

W-

W+

+

C-

C+

image5.emf
info Length

20 40 60 80 100 120 140 160 180 200

S

N

R

-6

-4

-2

0

2

4

6

8

10

12

@BLER=0.001 QPSK/AWGN

BIVPW_SC, R=1/12

BIVPW_SC, R=1/6

BIVPW_SC, R=1/3

BIVPW_SC, R=1/2

BIVPW_SC, R=2/3

FRANK_NATP_SC, R=1/12

FRANK_NATP_SC, R=1/6

FRANK_NATP_SC, R=1/3

FRANK_NATP_SC, R=1/2

FRANK_NATP_SC, R=2/3

image6.emf
info Length

20 40 60 80 100 120 140 160

S

N

R

@

B

L

E

R

=

0

.

0

0

1

-8

-6

-4

-2

0

2

4

6

8

10

CA-19, L=T=8

FRANK,NATP, R=1/12

FRANK,NATP, R=1/6

FRANK,NATP, R=1/3

FRANK,NATP, R=1/2

FRANK,NATP, R=2/3

BIVS, R=1/3

BIVS, R=1/2

BIE, R=2/3

MTKP, R=1/12

MTKP, R=1/6

image7.png
ur

u3

us

LLR(0,0)
i LLR(1,0)|
LLR(2,0) :
: L LLR(0, 1)
) | LLR(L, 1)
2,1
N " : LLR(0,2)
: LLR(1,2)
LLR(2,2)| q
: L LLR(0,3)
i LLR(1,3)|
LLR(2, 3) i
; LLR(0,4)
) { LLR(1,4)
LLR(2,4
N : L LLR(0,5)
I LLR(L,5)
LLR(2,5) :
Stage 1
Stage 2

x1

x3

x5

image1.png
CA-CRC19, T=L=8

10

40

60

80

100

Info length

120

140

160

180

200

—e—PWBIVS, R=1/12
—%—PWBIVS, R=1/6
—6—PWBIVS, R=1/3
—&—PWBIVS, R=1/2
—%—PWBIVS, R=2/3
—e—SS BIVS, R=112
—%—SS BIVS, R=1/6
—6—SS BIVS, R=1/3
—&—SS BIVS, R=112
—*—SS BIVS, R=2/3

image2.png
12

10~

40

60

80

100

Info length

120

140

160

180

200

—e—SS BIVS, R=112
—%—SS BIVS, R=1/6
—6—SSBIVS, R=1/3
—&—SS BIVS, R=112
—*—SS BIVS, R=2/3
—e—PWBIVS, R=1/12
—%—PW BIVS, R=1/6
—6—PWBIVS, R=1/3
—&—PWBIVS, R=1/2
—*—PWBIVS, R=2/3

