[bookmark: OLE_LINK3]3GPP TSG RAN WG1 Meeting #89		 R1-1707180
Hangzhou, China 15th – 19th May 2017
Agenda Item: 7.1.4.1.2
Source: ZTE
Title: 	 Further consideration on Flexibility of LDPC Codes for NR
Document for: Discussion and Decision

Introduction
[bookmark: OLE_LINK60][bookmark: OLE_LINK61]At the 3GPP TSG RAN1 #88bis meeting, the following working assumption has been achieved [1].
Working Assumption:
· The largest info block size supported by LDPC encoder Kmax and the largest shift size Zmax defined is {8448, 384} => Kbmax = 22
· To be confirmed automatically at RAN1#89 if no significant implementation or performance issues are identified.
· The base graph supporting Kmax should support the following set of shift sizes Z, where :
	Z
	a

	
	2
	3
	5
	7
	9
	11
	13
	15

	j
	0
	2
	3
	5
	7
	9
	11
	13
	15

	
	1
	4
	6
	10
	14
	18
	22
	26
	30

	
	2
	8
	12
	20
	28
	36
	44
	52
	60

	
	3
	16
	24
	40
	56
	72
	88
	104
	120

	
	4
	32
	48
	80
	112
	144
	176
	208
	240

	
	5
	64
	96
	160
	224
	288
	352
	
	

	
	6
	128
	192
	320
	
	
	
	
	

	
	7
	256
	384
	
	
	
	
	
	

· FFS by RAN1#89 whether some values can removed from the above table.
· FFS by RAN1#89 whether some of {272, 304, 336, 368} can be added to the above table.
In this contribution, we discuss the impacts of shift sizes on the flexibility of LDPC codes.
Parallelism-friendly decoder for cost-sensitive devices
[bookmark: OLE_LINK1][bookmark: OLE_LINK2][bookmark: OLE_LINK4] “Friendly” here means decoder implementation should have the freedom to select any applicable parallelism, such as 8, 16, 32, 64, …, 512. The decoder’s maximum parallelism level need not match the size of circular permutation matrix. A parallelism-friendly decoder doesn’t report its max parallelism level to the encoder.
For QC-LDPC code, a large cyclic shift permutation can be decomposed into several smaller cyclic shift permutations only if the lift size is divisible by the decoder’s parallelism as shown in appendix. If a decoder’s max parallelism is 8, when using QSN switch for its shift network, it can process codewords with lift size {1x, 2x, 3x, …, 8x}, where x could be any positive integer. For example, the decoder can deal with a lift size 12 by parallelism 6, at the expense of about 2 times latency. However, codewords with prime lift size cannot be supported by this decoder because the prime number size cyclic shift permutation cannot be divided into several smaller ones.
Parallelism friendly is important for cost performance trade-off. Some decoder implementation may weight cost than throughput. Therefore they are unlikely to have a very large max parallelism level.
The following 2 sets of shift sizes Z with form of are parallelism friendly. However, they are different in decoder’s implementation.
· Case 1: The shift sizes of working assumption in the table of [1]
Table 1
	Z
	a

	
	2
	3
	5
	7
	9
	11
	13
	15

	j
	0
	2
	3
	5
	7
	9
	11
	13
	15

	
	1
	4
	6
	10
	14
	18
	22
	26
	30

	
	2
	8
	12
	20
	28
	36
	44
	52
	60

	
	3
	16
	24
	40
	56
	72
	88
	104
	120

	
	4
	32
	48
	80
	112
	144
	176
	208
	240

	
	5
	64
	96
	160
	224
	288
	352
	
	

	
	6
	128
	192
	320
	
	
	
	
	

	
	7
	256
	384
	
	
	
	
	
	

· Case 2: The shift sizes of Case 1 plus some of {272, 304, 336, 368}
Table 2
	Z
	a

	
	2
	3
	5
	7
	9
	11
	13
	15
	17
	19
	21
	23

	j
	0
	2
	3
	5
	7
	9
	11
	13
	15
	
	
	
	

	
	1
	4
	6
	10
	14
	18
	22
	26
	30
	
	
	
	

	
	2
	8
	12
	20
	28
	36
	44
	52
	60
	
	
	
	

	
	3
	16
	24
	40
	56
	72
	88
	104
	120
	
	
	
	

	
	4
	32
	48
	80
	112
	144
	176
	208
	240
	272
	304
	336
	368

	
	5
	64
	96
	160
	224
	288
	352
	
	
	
	
	
	

	
	6
	128
	192
	320
	
	
	
	
	
	
	
	
	

	
	7
	256
	384
	
	
	
	
	
	
	
	
	
	

Decoder with parallelism [2, 3, 5, 7, 9, 11, 13, 15] can support all the shift sizes of case 1, while decoder with parallelism [2, 3, 5, 7, 9, 11, 13, 15] plus some of [17, 19, 21, 23] is required to support shift sizes of case 2. Because the added {272, 304, 336, 368} enlarges the value of a, implementation complexity will be increased.
For example, the minimum shift network for case 1 needs a QSN switch with 15 inputs and for case 2 the minimum shift network needs to utilize a QSN switch with the number of inputs up to 23. The shift network’s complexity of case 2 is about 2 times that of Case 1. The complexity is counted by the number of 2-1 MUXs. One QSN switch PM*(2*ceil(log2(PM))-1)+1≈2* PM*ceil(log2(PM)) “2-1 MUX” per bit width, where PM denotes the parallelism level. Similarly, the number of CNUs of Case 2 is 1.5 times that of Case 2. Obviously, Case 1 is more appropriate for cost-sensitive devices.
Observation 1: Adding some shift sizes of {272, 304, 336, 368} to the set of shift sizes will increase the complexity of shift network as well as CNUs .
Proposal 1: Keep the table of shift sizes in [1] for base graph supporting Kmax,. Do not add any of {272, 304, 336, 368}.
Flexibility of code block size
According to LTE standard of TS36.213, for LTE turbo codes, code block size (CBS, namely information block size) gaps between two adjacent CBS include 8, 16, 32 and 64. Here the CBS refers to the number of bits for the code block, which is denoted as the parameter “Kr” in section 5.1.2 of [5].
For the smallest CBS range, CBS gap between two adjacent CBS is 8. For the largest CBS scope, CBS gap is 64. According to the contributions related to QPP interleaver, it is known that the CBS gap is related to the supported parallelism of turbo decoder.
A good designed LDPC base graph can have sufficient shortening capability through density evolution and EXIT chart [6]. Here the ‘shortening capability’ means that with padding, the performance will not degrade as kb changes within a certain rang. For a base graph with Kbmax = 22 and Zmax = 384, full-flexibility can be supported by allowing shortening a few columns to support CBS with 1-bit granularity, which means that the optimal performance can be maintained in this shorting range. Therefore, both lift size Z = a * 2j and shortening encoding (padding operation) are used for 1 bit granularity of code block size of LDPC codes. In order to adapt to the forward compatibility, NR LDPC code should have capability of full flexibility of code size, but for the design of TBS table LTE TBS granularity could be continue to be used.
Observation 2: Full flexibility of code size for LDPC can be achieved by combining the variable shift sizes and shortening.

Conclusion
For flexible LDPC design, we have the following observations and proposal:
Observation 1: Adding some shift sizes of {272, 304, 336, 368} to the set of shift sizes will increase the complexity of shift network as well as CNUs .
Observation 2: Full flexibility of code size for LDPC can be achieved by combining the variable shift sizes and shortening.
Proposal 1: For base graph supporting Kmax, keep the table of shift sizes in [1] unchanged. Do not add any of {272, 304, 336, 368}.
References
[1] [bookmark: _Ref430615169]3GPP Draft Report of 3GPP TSG RAN WG1 #88bis V0.1.0.
[2] [bookmark: _Ref471740836]3GPP TS36.212 V12.2.0
[3] [bookmark: _Ref474167228]On the Performance Loss of DVB-S2 LDPC Codes and Near-Capacity QC-LDPC Code Design, IEEE WCNC 2015 , Shuang Chen, Kewu Peng, Tsinghua National Laboratory
Appendix:
Cyclic permutation decomposition:

Supposing denotes a vector of z entries and z is divisible by q. X is divided into q sub-vectors as where each group u(k) has entries, where .

Supposing denotes the cyclic-right permutation of X, i.e. , where P is a base cyclic permutation matrix with size of z*z, z is lift factor, and s is the shift value. Y can be divided into q sub-vectors as , where.

Let , and , therefore u(k) can be denoted as cyclic-right permutation of v(k) by or , as:

, where Q is a base cyclic permutation matrix of size q*q.
One thing need to be aware is that if z is not divisible by q, this cyclic permutation decomposition can’t be performed.

[bookmark: OLE_LINK9][bookmark: OLE_LINK10]Here is an example. Let Y=[x29,x30,…x41,x0,x1,…x26,x27,x28] denote a cycle-right shift by for a data vector X=[x0,x1,x2,…,x41], where both X and Y are with size . This cyclic permutation can be realized as first dividing X into 3 words (or sub-vectors) u(0), u(1),u(2) by equal space sampling, each word has length of, as shown in Figure A1 (a). Then three cycle-right shift inside each word and a cycle-right shift among the 3 words are performed to get sub-vector v(0), v(1) and v(2). Finally, Y, the cycle-right shift version of X are obtained by interlace of v(0), v(1) and v(2), as shown in Figure A1 (b).

(a) Vector X is divided into 3 words u(k), k=0,1,2

(b) cycle-right permutation in each word and cycle-right permutation among 3 words
Figure A1 illustration of cyclic permutation decomposition

- 1/4 -
image2.wmf
[(0),(1),(2),,(1)],

q

=-

Xuuuu

L

oleObject2.bin

image3.wmf
/

lzq

=

oleObject3.bin

image4.wmf
,,2,(1)

()[,]0,1,,1

T

kqkqklqk

kxxxxkq

++-+

==-

u

LL

oleObject4.bin

image5.wmf
12

[,,,]

z

yyy

=

Y

L

oleObject5.bin

image6.wmf
s

=×

YPX

oleObject6.bin

image7.wmf
[(0),(1),(2),,(1)]

q

=-

Yvvvv

L

oleObject7.bin

image8.wmf
,,2,(1)

()[,]0,1,,1

T

kqkqklqk

kyyyykq

++-+

==-

v

LL

oleObject8.bin

image9.wmf
'

sl

s

z

×

êú

=

êú

ëû

oleObject9.bin

image10.wmf
0

'

z

nroundss

l

æö

æö

=-×

ç÷

ç÷

èø

èø

oleObject10.bin

image11.wmf
'

s

oleObject11.bin

image12.wmf
'1

s

+

oleObject12.bin

image13.wmf
'

(,)()0,1,,1;

0

0

('1)

(mod(,))(),1,...,1.

00

0

s

knqQkkqn

s

knqQkqnqnq

k

+==--

+

+==--+-

ì

ï

í

ï

î

vu

vu

L

oleObject13.bin

image14.wmf
13

s

=

oleObject14.bin

image15.wmf
42

z

=

oleObject15.bin

image16.wmf
'14

z

=

oleObject16.bin

image17.emf
u(0)u(1)

u(2)

……

X

x

(

0

)

x

(

5

)

x

(

1

)

x

(

2

)

x

(

4

)

x

(

3

)

x

(

6

)

x

(

4

1

)

x

(

7

)

x

(

8

)

x

(

4

0

)

x

(

3

9

)

u(k)

oleObject17.bin
u(0)

u(1)

u(2)

……

X

x(0)

x(5)

x(1)

x(2)

x(4)

x(3)

x(6)

x(41)

x(7)

x(8)

x(40)

x(39)

u(k)

image18.emf
……

Cycle-right by s=13

Cycle right by 1 among

u(k)

Cycle right

by 5

Cycle right

by 4

Cycle right

by 4

X

Cycle right

by 4

Cycle right

by 4

u(1)u(2)

Cycle right

by 5

u(0)

v(0)v(1)v(2)

……

Y

x

(

2

9

)

x

(

3

0

)

x

(

3

1

)

x

(

3

3

)

x

(

3

2

)

x

(

2

8

)

x

(

2

7

)

x

(

2

6

)

x

(

2

)

x

(

1

)

x

(

0

)

……

u(0)u(1)u(2)

oleObject18.bin
……

image1.wmf
112

{}[,,,]

izz

xxxx

´

==

X

L

oleObject1.bin

