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1. Overview
In RAN1 #88bis April 2017 (Spokane) meeting, the following matters were concluded and agreed upon regarding polar code design for control channel:
	Conclusion:
· Study until RAN1#89 polar code construction techniques to facilitate early termination (i.e. before decoding all the information bits) without degrading BLER performance or latency (especially considering the time for deinterleaving the information and assistance bits) compared to purely implementation based methods such as path-metric based pruning
· e.g. assistance bits distributed in the codeword in such a way that error detection can be performed after partial decoding
· Investigate performance, complexity and FAR impacts
· Study of use of data-independent scrambling to facilitate early termination is also not precluded
Agreement:
· J CRC bits are provided (which may be used for error detection and may also be used to assist decoding and potentially for early termination)
· J may be different in DL and UL
· J may depend on the payload size in the UL (0 not precluded)
· In addition, J’ assistance bits are provided in reliable locations (which may be used to assist decoding and potentially for early termination)
· J + J’ <= the number of bits required to satisfy the FAR target (nFAR) + 6
· Working assumption: 
· For DL, nFAR = 16 (at least for eMBB-related DCI)
· For UL, nFAR = 8 or 16 (at least for eMBB-related UCI; note that this applies for UL cases with CRC)
· J’>0
· Working assumption: J”<=2 additional assistance bits are provided in unreliable locations (which may be used to assist decoding and potentially for early termination)
· Can be revisited in RAN1#89 if significant benefit is shown from a larger value of J” without undue complexity – companies are encouraged to additionally evaluate J”=8
· The J’ (and J” if any) bits may be CRC and/or PC and/or hash bits (downscope if possible)
· Placement of the J, J’ (and J” if any) assistance bits is FFS after the study of early termination techniques
· Appended?
· Distributed?
· evenly?
· unevenly? 

Offline session consensus: 
At least the factors relevant for evaluating the sequences are:
· Performance
· Information granularity
· Compatibility with rate matching
· Complexity
· Latency



Sequence design is an important step for polar code encoding. Polar code being a non-universal code as noted in [3][4], the reliability of the indices changes with change in channel condition. It has been noted that the reliability ordering of the indices are almost same despite change in channel condition as long as the codelength is small (less than 32). However with increase in codelength, the reliability ordering of indices depends on channel conditions as increasing number of indices tend to have very close reliabilities. Density Evolution or Density Evolution based on Gaussian Approximation based sequence design has been one of the widely used method used in construction of polar codes as it emulates the Successive Cancellation decoding algorithm in estimating the reliabilities of the polarized indices. Sequence design based on DE or DE based on GA successfully captures the impact of varying channel condition on index reliabilities. Polarization Weight based sequence design introduced in [2] has emerged as another candidate scheme for sequence design. PW based method does not depend on channel condition and ignores the impact of channel SNR on the index reliabilities. In this contribution, we make a comparative study of the BLER performance of the two sequence design schemes. As is evident from the simulation results, polar codes constructed using DE based on GA performs better or as good as polar codes constructed using PW.  
2. Simulation results
[bookmark: _GoBack]CRC-aided SCL decoding algorithm has been used over BI-AWGN channel with BPSK modulation in the simulations. For the CRC-aided SCL decoder, list size of 1, 2 and 8 and CRC-length of 16 were used.
[image: ]

Observation 1: Polar codes constructed using DE based on GA performs perform better than polar codes constructed based on Polarization Weight (PW) based sequence design at coding rate 2/3.
Observation 2: Polar codes constructed using DE based on GA perform significantly better than polar codes constructed based on Polarization Weight (PW) based sequence design at coding rate 2/3 when list size is reduced to less than 8.
Proposal 1: Density Evolution based on Gaussian Approximation should be adopted as baseline method for sequence design in polar codes for control channel.
Proposal 2: Real-time sequence design should be avoided; precomputed reliability ordered sequence for a long mother code should be stored in memory from which sequences for shorter mother code lengths should be extracted. 
3. Summary
Polar code design is a channel specific task which has been noted in multiple papers [3][4]. This property of polar codes has been referred to as “non-universality”. Ordering of polarized indices based on their reliabilities is referred to as “sequence design” in polar code encoding. Polar code being a non-universal code, the reliability of the indices changes with change in channel condition. Density Evolution or Density Evolution based on Gaussian Approximation based sequence design has been one of the widely used method used in construction of polar codes as it emulates the Successive Cancellation decoding algorithm in estimating the reliabilities of the polarized indices. Sequence design based on DE or DE based on GA successfully captures the impact of varying channel condition on index reliabilities. Polarization Weight based sequence design introduced in [2] has emerged as another candidate scheme for sequence design. PW based method does not depend on channel condition and ignores the impact of channel SNR on the index reliabilities. In this contribution, we make a comparative study of the BLER performance of the two sequence design schemes. As is evident from the simulation results, polar codes constructed using DE based on GA performs better than polar codes constructed using PW.
Observation 1: Polar codes constructed using DE based on GA performs perform better or as good as polar codes constructed based on Polarization Weight (PW) based sequence design at coding rate 2/3.
Observation 2: Polar codes constructed using DE based on GA performs perform significantly better than polar codes constructed based on Polarization Weight (PW) based sequence design at coding rate 2/3 when list size is reduced to less than 8.
Proposal 1: Density Evolution based on Gaussian Approximation should be adopted as baseline method for sequence design in polar codes for control channel.
Proposal 2: Real-time sequence design should be avoided; precomputed reliability ordered sequence for a long mother code should be stored in memory from which sequences for shorter mother code lengths should be extracted. 
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4. Appendix
Density Evolution is an iterative scheme that takes channel SNR as input to generate the mean value of the noise (which is assumed to be Gaussian) for each index.  In this section, we present an example of reliability ordered sequence (most reliable index first) constructed using DE based on GA for polar code of length 1024 at Eb/N0 = 3 dB as follows
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