3GPP TSG RAN WG1 Meeting #89 	 R1-1706970
Hangzhou, China, 15 – 19 May, 2017

Agenda Item:	7.1.4.1.2
Source:	Huawei, HiSilicon
Title:	LDPC design for eMBB data
Document for:	Discussion and Decision

[bookmark: _Ref124589665][bookmark: _Ref71620620][bookmark: _Ref124671424]Introduction
In the RAN1#88bis meeting the following agreements were reached [1].
Working Assumption:
· The largest info block size supported by LDPC encoder Kmax and the largest shift size Zmax defined is {8448, 384} => Kbmax = 22
· To be confirmed automatically at RAN1#89 if no significant implementation or performance issues are identified.
· The base graph supporting Kmax should support the following set of shift sizes Z, where :
	Z
	a

	
	2
	3
	5
	7
	9
	11
	13
	15

	j
	0
	2
	3
	5
	7
	9
	11
	13
	15

	
	1
	4
	6
	10
	14
	18
	22
	26
	30

	
	2
	8
	12
	20
	28
	36
	44
	52
	60

	
	3
	16
	24
	40
	56
	72
	88
	104
	120

	
	4
	32
	48
	80
	112
	144
	176
	208
	240

	
	5
	64
	96
	160
	224
	288
	352
	
	

	
	6
	128
	192
	320
	
	
	
	
	

	
	7
	256
	384
	
	
	
	
	
	

· FFS by RAN1#89 whether some values can removed from the above table.
· FFS by RAN1#89 whether some of {272, 304, 336, 368} can be added to the above table.
Agreement:
The base graph design is selected from the following alternatives:
Alt 1: One base graph covering ~1/5 <= R <= ~8/9
Alt 1a: Two nested base graphs, where:
· Base graph #1
· Covers info block size K:
			Kmin1 <=K<= Kmax1, Kmin1 > Kmin, Kmax1 =Kmax
· Covers code rate R: ~1/3 <= R <= ~8/9; FFS whether Rmin can be ~1/5
· Base graph #2
· Nested within base graph #1
· Covers info block size K:
	 		Kmin2 <=K<= Kmax2, Kmin2 =Kmin, Kmax2 < Kmax, where 512<=Kmax2<=2560
· Covers code rate R: ~1/5 <= R <= ~2/3
· Kbmax =16 is the starting point; lower values in the range 10<=Kbmax<16 are encouraged if feasible.
· The set of supported shift sizes is taken from the set of shift sizes supported by the base graph supporting Kmax
Alt 2: Two base graphs, where:
· Base graph #1
· Covers info block size K:
			Kmin1 <=K<= Kmax1, Kmin1 > Kmin, Kmax1 =Kmax
· Covers code rate R: ~1/3 <= R <= ~8/9; FFS whether Rmin can be ~1/5
· Base graph #2
· Not nested within base graph #1
· Covers info block size K:
	 Kmin2 <=K<= Kmax2, Kmin2 =Kmin, Kmax2 < Kmax, where 512<=Kmax2<=2560
· Covers code rate R: ~1/5 <= R <= ~2/3
· Kbmax = 10 is the starting point; higher values in the range 10<Kbmax<=16 can also be considered if necessary.
· The set of supported shift sizes is taken from the set of shift sizes supported by the base graph supporting Kmax
BLER Performance is the main criterion for selecting between Alts 1, 1a and 2 (since it is already assumed that complexity is not increased significantly by the addition of a second smaller base graph); decoding latency (e.g. evaluated by the number of edges) should also be considered as an important criterion.

In this contribution we present the base graph design according to the guidelines in [1]. PCMs and corresponding lifting tables are provided in the Excel spreadsheet.
Description for LDPC rate matching
Single parity check (SPC) extension is a common method for LDPC to realize rate matching which is called Raptor-like structure or Nested Base graph structure. It starts from a high rate LDPC core graph with dual-diagonal exponent matrix structure. To achieve lower rate, the high rate core graph is extended with one single parity check equation and one parity bit at a time.
Proposed LDPC Design
We use Quasi-Cyclic (QC) LDPC codes with QC parity-check matrices, where each circulant is either a circulant permutation matrix (CPM) or the zero matrix. Usually a quasi-cyclic parity-check matrix (PCM) with circulant row blocks, circulant column blocks, and the circulant size is represented in the following form:
,
where the integers are in the range . Here we denote by the CPM corresponding to the right cyclic shift by positions if and the zero matrix if . The integers are the exponents and the corresponding integer matrix is the exponent matrix of . In what follows the QC LDPC codes and their PCMs are defined by the corresponding exponent matrices.
0. Nested QC LDPC Codes
We describe two nested families of irregular QC LDPC codes obtained from two high-rate core graphs using an extension by several single parity-check codes (SPCs)[3].
The general structure of the corresponding exponent matrices is shown in Figure 1, where the green part corresponds to the highest rate core code and is called the core matrix and the lower white part is called the extension part. The core matrices have a dual-diagonal structure in their parity part. The full matrix with the extension part supports a low-complexity encoding.
[image:]
Figure 1. Nested QC-LDPC code.
The number of information nodes for the base graph #1 (hereinafter BGn#1) is set to 22 with maximal lift size supported Zmax=384. BGn#1 covers info block sizes K: 640<=K<=8448 and code rates R: 1/3 <= R <= 8/9. For higher performance of the code eight different lifted PCMs based on BG1 are used depending on the lift size Z.
The base graph BGn#1 is designed to have a nested subgraph with =16. When used with maximal lift size Zmax=160, this nested subgraph (hereinafter denoted as BGn#2) covers info block sizes K: 40 <=K<=2560 and code rates R: 1/5 <= R <= 2/3.
In order to obtain codes with different number of information bits and parity bits we use the length and rate adaption scheme described in the next sections. This is achieved by using puncturing both information and parity bits, and also shortening by zero padding in the information parts of the codeword. For both base graphs for all rates we puncture symbols that correspond to the first two circulant column blocks of the PCMs as it is shown in Figure 1. These two punctured circulant columns have relatively high column weight among all the circulant columns and are called High-Weight (HW) columns.
In order to obtain a high level of parallelism during the decoding we restrict the structure of the extension part. A group of rows in the extension part of the exponent matrix has the feature of quasi row orthogonality (QRO) if for each pair of different rows in this group they are allowed to have more than one common positive entries (not equal to -1) only in the HW circulant column (see Figure 1). It is worth noting that block-parallel decoder could encounter fewer conflicts if multiple cores (blocks) are processed simultaneously, thanks to the QRO structure. To go a step further, one can also design the rows at the border of two neighboring groups are not overlapped except for HW columns such that the implementation is more flexible. This can be called as Non-Conflict (NC) property of the extension. A combination of QRO and NC properties in the extension part of the code will be called non-conflict quasi row orthogonal (NC-QRO) structure. This scheme can be efficiently implemented in hardware by fully utilizing the NC-QRO structure of the non-punctured parts of the PCM rows. As a result, a flexible trade-off between high throughput and good performance can be obtained. Low complexity of the routing network is also achievable by using multiple block processors. This can be done with several blocks of each non-overlapping group/layer of rows in parallel.
Observation 1: Non-conflict quasi row orthogonal structured LDPC codes give a flexible trade-off between high throughput and good performance.

0. Nested base graphs
Lifting method, length and rate adaptation
Shortening, puncturing and lifting method are used for QC LDPC code to implement length and rate adaptation. Suppose we have an exponent matrix with the circulant size . Below we describe how we obtain the -code with codeword size and information block size , where .
For each of the base graphs BGn#1, BGn#2, we use the offset lifting method described below to obtain several lifted versions of the exponent matrix with the circulant size , and 256 correspondingly. Such method can improve the performance with fine granularity. The lifting method consists of 3 steps:
1) Define , where . As defined at RAN1#88bis ([9]), here we assume that only discrete set of circulant sizes is allowed to be used, e.g. a set Zallowed = {8:1:16} υ {16:2:32} υ {32:4:64} υ {64:8:128} υ {128:16:256} υ {256:32:384}One should note that all such values have the following form: .
2) After is defined, we set and , where is a non-negative shift value such that resulting lift size is selected from one of 8 minimal possible values , defined such that and .
3) For BGn#1 and its nested subgraph BGn#2, after lift size is defined based on using the above described offset lifting table, a parity check matrix is additionally assigned to the given information size . Here are 8 different labelled versions of BGn#1 corresponding to eight values of the parameter .
For each information size the offset value is selected in offline based on the performance of the corresponding code in the simulations (SNR needed to obtain both BLER= and BLER=). As 8 fixed options for Z are explored each time, we need to store not more than bits in an offset lifting table (three bits for each value) defining Z for each . Given for BGn#1 and for BGn#2, 8 options for offset for these base graphs may be different and, as a result, offset lifting tables for these two graphs are also different.
For example, for BGn#1 the following table can be used to define offsets :
Table 1. Example of offset value and parameters.
	
	index
(3 bit value)
	Automatically calculated parameters

	
	
	
	
	
	

	30
	2
	6
	36
	9
	40-660

	31
	1
	5
	36
	9
	661-682

	32
	1
	4
	36
	9
	683-704

	33
	0
	3
	36
	9
	705-726

	34
	4
	18
	52
	13
	727-748

	35
	2
	9
	44
	11
	749-770

	…
	
	…
	…
	…
	…

	384
	0
	0
	384
	12
	8185-8484

Here parameter derived from lift size denotes an index of the PCM to be used. The full version of this lifting table, as well as lifting tables for BGn#2, and PCMs for BGn#1and BGn#2 can be found in the attached Excel spreadsheet.
[bookmark: _Ref481795419]Puncturing and shortening
Once we obtain the lifted exponent matrix and the circulant size by the method described above, we define the code with codeword size and information block size obtained by puncturing the bits corresponding to the first two circulant columns (see Figure 1). Let us define parameters and .
If , we further puncture redundant bits starting from the end of the codeword. After applying the puncturing described above, the punctured codeword is obtained. If we use further shortening by zero padding for the last bits in the punctured codeword.
Performance with fine granularity
Figure 2 shows the simulation results for the length adaption scheme applied to BGn#1 for 1e-2 and 1e-4 BLERs. Figure 3 shows the simulation results for BGn#2 code.
BP decoder is used in the evaluation in all cases. As it can be seen from the figures, the used lifting method allows a very smooth transition from one circulant size to another with no visible catastrophic cases for all rates and all information block sizes.
[image:]
 [image:]
Figure 2. Performance of BGn#1 (Kbmax=22), Es/N0(dB) at BLER= and 10-4.
[image:]
[image:]
Figure 3. Performance of BGn#2 (Kbmax=16), Es/N0(dB) at BLER= and 10-4.

Observation 2: The length adaptation scheme in Sec.3.2.2 supports fine granularity and avoids catastrophic cases for different lengths and rates when used with discrete set of allowed circulant size values. It also allows a simple hardware implementation.
Observation 3: Multiple labelled versions of the same base graph may improve performance of the LDPC code.
0. Independent base graphs
Lifting method length and rate adaptation
For the design of two independent base graphs, the following parameters are used:
	Family
	
	
	core size
	matrix size
	
	
	
	

	BG#1
	22
	2
	5*27
	46*68
	22/25
	1/3
	352
	8448

	BG#2
	10
	2
	7*17
	42*52
	2/3
	1/5
	40
	2560

Here means the number of punctured information nodes in the base graph. Core size means the size of kernel part and matrix size means the size of lowest rate matrix.
For BG#1, we use 5 labelling matrices to cover the lift size Zallowed1 ={16 18 20 22 24 26 28 30 32 36 40 44 48 52 56 60 64 72 80 88 96 104 112 120 128 144 160 176 192 208 224 240 256 288 320 356 384}, which is denoted by . The lifting method consists of three steps:
1) For a given information size K, define in the allowed set Zallowed1 that satisfies, here .
2) Once the lift size Z is decided, choose the corresponding labelling matrix from according to the following relationship:
	
	lift size

	PCM1
	16
	18
	20
	22
	24
	26
	28
	30

	PCM2
	32
	36
	40
	44
	48
	52
	56
	60

	PCM3
	64
	72
	80
	88
	96
	104
	112
	120

	PCM4
	128
	144
	160
	176
	190
	206
	224
	240

	PCM5
	256
	288
	320
	352
	384
	
	
	

3) Use the chosen PCM and lift size to do encoding after shortening if needed. No modulo or other calculation is needed for the shift value.
For BG#2, we use 6 labelling matrices to cover the lift size Zallowed2 ={8 9 10 11 12 13 14 15 16 18 20 22 24 26 28 30 32 36 40 44 48 52 56 60 64 72 80 88 96 104 112 120 128 144 160 176 192 208 224 240 256}, which is denoted by . The lifting method consists of three steps:
1) For a given information size K, define in the allowed set Zallowed2 that satisfies, here .
2) Once the lift size Z is decided, choose the corresponding labelling matrix from according to the following relationship:
	
	lift size

	PCM1
	8
	9
	10
	11
	12
	13
	14
	15
	

	PCM2
	16
	18
	20
	22
	24
	26
	28
	30
	

	PCM3
	32
	36
	40
	44
	
	
	
	
	

	PCM4
	48
	52
	56
	60
	
	
	
	
	

	PCM5
	64
	72
	80
	88
	96
	104
	112
	120
	

	PCM6
	128
	144
	160
	176
	190
	206
	224
	240
	256

3) Use the chosen PCM and lift size to do encoding after shortening if needed. No modulo or other calculation is needed for the shift value.
Puncturing and shortening
Puncturing and shortening is the same as described in Section 3.2.2.
Performance with fine granularity
Figure 4 shows the simulation results for the length adaption scheme applied to BG#1 for 1e-2 and 1e-4 BLERs. Figure 5 shows the simulation results for BGn#2 code. Thanks to multiple labelled versions of the same base graph, the BLER curves are quite smooth among the transition of circulant size and no error floor is observed.
[image:]
[image:]
Figure 5. Performance of BG#1 (Kbmax=22), Es/N0(dB) at BLER= and 10-4.
[image:]
[image:]
Figure 6. Performance of BG#2 (Kbmax=10), Es/N0(dB) at BLER= and 10-4.
Observation 4: The length adaptation scheme in Sec.3.3.2 supports fine granularity and avoids catastrophic cases for different lengths and rates when used with discrete set of allowed circulant size values. It also allows a simple hardware implementation.
Discussion
From the evaluation of the base graphs presented above, it can be observed that both approaches for two base graphs, nested and independent base graphs, allow to design a good solution for the entire range of information block lengths for eMBB data. It is noted that the approach of two independent base graphs allows further design freedom although the performance would be clearly dependent on the range of K and code rates for which the base graph is optimized (and correspondingly the selected Kb parameter).
It is noted that a single base graph that covers the entire information block range (~40 < K < ~8K) and code rates (1/5 < r < 8/9) can be designed and performs well over the entire range. In the range of small information block lengths, the large base graph (e.g., BGn#1) performs well and the BLER curves are smooth as function of K. If a second base graph is optimized for a portion of the entire block length and for certain code rates, it can provide some performance advantage in that range, although this advantage might be relatively small.
From our evaluation and implementation, the QRO property of the base graph allows a flexible trade-off between high throughput and good performance. In addition, the use of multiple labelled versions of each base graph helps to improve performance and should be considered in the design of the base graphs. The presented designs support the fine-granularity rate-matching scheme for the entire information block length considered.
Further BLER performance and throughput of the base graphs presented above are given in [2] and [3].
Conclusions
This contribution presents the design of base graphs for eMBB data channel. The detailed designs of base graphs with nested and independent structure between the two base graphs are given. a design of QC LDPC code for eMBB. It is shown that this design of LDPC code has good performance and supports the fine-granularity rate-matching scheme for all scenarios of eMBB channel.
Observation 1: Non-conflict quasi row orthogonal structured LDPC codes give a flexible trade-off between high throughput and good performance.
Observation 2: The length adaptation scheme in Sec.3.2.2 supports fine granularity and avoids catastrophic cases for different lengths and rates when used with discrete set of allowed circulant size values. It also allows a simple hardware implementation.
Observation 3: Multiple labelled versions of the same base graph may improve performance of the LDPC code.
Observation 4: The length adaptation scheme in Sec.3.3.2 supports fine granularity and avoids catastrophic cases for different lengths and rates when used with discrete set of allowed circulant size values. It also allows a simple hardware implementation.
References
[bookmark: _Ref471725794]Chairman’s Notes, RAN1#88bis meeting, Spokane, USA, 3rd – 7th April 2017
R1-1706971, “Performance evaluation of LDPC codes”, Huawei, HiSilicon, RAN1#89
R1-1706972, “Throughput of LDPC codes”, Huawei, HiSilicon, RAN1#89

image3.emf
10002000300040005000600070008000

Information length K, bits

-1

0

1

2

3

4

5

6

7

E

s

/

N

o

r

e

q

u

i

r

e

d

f

o

r

B

L

E

R

=

1

0

-

4

,

d

B

Proposed length adaption scheme (QPSK, BP decoder, 50 iterations)

Rate=1/3

Rate=2/5

Rate=1/2

Rate=2/3

Rate=3/4

Rate=5/6

Rate=8/9

image4.emf
5001000150020002500

Information length K, bits

-4

-3

-2

-1

0

1

2

3

4

5

6

E

s

/

N

o

r

e

q

u

i

r

e

d

f

o

r

B

L

E

R

=

1

0

-

2

,

d

B

Proposed length adaption scheme (QPSK, BP decoder, 50 iterations)

Rate=1/5

Rate=1/3

Rate=2/5

Rate=1/2

Rate=2/3

image5.emf
5001000150020002500

Information length K, bits

-3

-2

-1

0

1

2

3

4

5

6

7

E

s

/

N

o

r

e

q

u

i

r

e

d

f

o

r

B

L

E

R

=

1

0

-

4

,

d

B

Proposed length adaption scheme (QPSK, BP decoder, 50 iterations)

Rate=1/5

Rate=1/3

Rate=2/5

Rate=1/2

Rate=2/3

image6.emf
-2-101234567802000400060008000Es/N0 to get BLER-0.01,dB

QPSK, BP decoder, 50 iterations

Rate=1/3Rate=2/5Rate=1/2Rate=2/3Rate=3/4Rate=5/6Rate=8/9

image7.emf
-2.5-0.51.53.55.57.59.502000400060008000Es/N0 to get BLER-0.0001,dB

QPSK, BP decoder, 50 iterations

Rate=1/3Rate=2/5Rate=1/2Rate=2/3Rate=3/4Rate=5/6Rate=8/9

image8.png

image9.png

image1.png

image2.emf
10002000300040005000600070008000

Information length K, bits

-1

0

1

2

3

4

5

6

7

E

s

/

N

o

r

e

q

u

i

r

e

d

f

o

r

B

L

E

R

=

1

0

-

2

,

d

B

Proposed length adaption scheme (QPSK, BP decoder, 50 iterations)

Rate=1/3

Rate=2/5

Rate=1/2

Rate=2/3

Rate=3/4

Rate=5/6

Rate=8/9

