[bookmark: _GoBack]3GPP TSG RAN WG1 #88bis Meeting 										R1-1706528
Spokane, WA, U.S.A, 3rd - 7th April, 2017

Agenda item:		8.1.4.2.2
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Source:	Nokia, Alcatel-Lucent Shanghai Bell
Title:	Short block codes for eMBB control
Document for:		Discussion and Decision
1	Introduction
In Ran1 #87 meeting, Ran1 selected eMBB data and control channel codes to be LDPC and Polar codes, respectively. Additionally, the coding scheme for very small block lengths of control channel information can be different from polar codes according to the following agreement made in Ran1 #87 meeting.

Agreement:
· UL eMBB data channels:
· Adopt flexible LDPC as the single channel coding scheme for small block sizes
· (Note that it is already agreed to adopt LDPC for large block sizes)
· DL eMBB data channels:
· Adopt flexible LDPC as the single channel coding scheme for all block sizes
· UL control information for eMBB
· Adopt Polar Coding (except FFS for very small block lengths where repetition/block coding may be preferred)
· DL control information for eMBB
· Adopt Polar Coding (except FFS for very small block lengths where repetition/block coding may be preferred)
In Ran1 #88 meeting, channel codes for very short info block sizes were discussed and following agreement was made to progress with the evaluations.
Conclusion:
For very small block lengths:
· For evaluations to be submitted to RAN1#88bis of channel code for very small block lengths, evaluate both BLER and error detection capability for comparison
· FFS the error detection targets
· FFS whether the receiver knows in each case whether a codeword is transmitted and the format thereof
· FFS whether the coding scheme is the same on control and data physical channels
· FFS the details of the selection criteria
In this contribution, we further discuss short block codes and compare BLER performance for Reed-Muller and PC-Polar when they have a similar error detection capability.
[bookmark: OLE_LINK13][bookmark: OLE_LINK14]2	Coding Schemes for Very Short Codes Block
Short block codes were already discussed in the many other contributions [1-3]. In [1], block codes (Reed-Muller) were compared with tail-biting convolutional code (TBCC) and Golay code, where Reed-Muller shows good performance for very small block sizes. Also, [2] showed a similar observation, and propose Reed-Muller for very small block sizes. Considering these aspects, LTE adopted Reed-Muller as the short block-coding scheme except for some cases where 1-2 bits of control information. Let us recall the control information for UL and DL,

a) Uplink
· HARQ, 1-2 bits: Repetition and Simplex
· Rank Indicator, 1-2 bits : Repetition and Simplex
· CQI <11 bits : Reed-Muller encoding
· HARQ > 2 bits: Reed-Muller encoding or DUO Reed-Muller encoding.
· CQI >11 bits: Tail biting Convolutional code of rate 1/3

b) Downlink
· DCI: Tail biting Convolutional code of rate 1/3
· CFI, 2 bits: Block Code Rate 1/16 based on Parity code 2/3 concatenated to Repetition Code.
· HARQ Indicator, 1 bit: Repetition Code 1/3.

Let us denote K the length of the UCI bits varying between 1 and 11, and the code length N=20 or 32 as the considered Reed-Muller code length. In [4] LTE release 13, Reed-Muller code was proposed as the main component for encoding UCI for PUCCH for at least one or combination of UCI for information length K < 11 bits. In LTE, the encoding scheme for CQI transmission in PUCCH is done with a uniformly punctured Reed-Muller code followed by a circular repetition code. For 11 < K < 22 bits, it is also possible to use concatenated Reed-Muller codes or TBCC as in LTE. The generating matrix (11 by 20) of the Reed-Muller mother code denoted GM is given in [4] and described in Table 1 (Annex 1). This PUCCH CQI coding scheme is a punctured version of the PUSCH CQI coding scheme described by a generating matrix (11 by 32) , where the last twelve bits are punctured. In addition to CQI, acknowledgment (Ack) is also encoded by the Reed-Muller (11 by 32) in [4], for Format 3, 4, 5 and information bit length larger than 2 bits. In many other cases, when information length is 1 < K < 2 bits we refer to the use of repetition code or the simplex code as proposed in [4].
Further details of encoding of Reed-Muller are explained as follows.
Reed-Muller Encoding:
· The information word is encoded using the generating matrix of the (K, 20-32) Reed-Muller block code that is a linear combination of 11 basis sequences and a circular repetition code when K < 11 bits.
· In LTE release 13 [4], when K >11 bits of CQI a tail-biting convolutional code is used for the CQI encoding with Rate 1/3, whereas a concatenated Reed-Muller code is used for Ack/Nack .
The structure of the coding matrix enables to perform decoding using Fast Hadamard Transforms (FHT) as described in [5]. Performance result are provided in the following section.
3	Error Correction/Detection with RM codes
For very short lengths, as proposed decoders are ML and the decoder output can always be a code word, and error events are kept undetected without a CRC attachment. In the context of control channels, the guarantee of very low undetected error rates is critical as the following data transmissions rely on the decoded control information.
Accordingly, a strong error detection mechanism is required in this context. Concatenating an outer error detection code is better to exclude for the very short block length regime, as it involves an overhead to the very short payload that compromises the throughput.
Among appropriate solutions one consists in upper layer reliability mechanisms, where a post decoding threshold test can be applied to a metric related to the decoding algorithm, to decide about discarding low reliable control information.
The evaluation of the reliability for the decoder bring an additional support to higher layer processes, as it can allows reaching the missed detection and false alarm requirements specified in [6][7[.
In the case of OSD decoder some metrics are proposed in [8][9], whereas regarding the FHT decoder we propose a good performing metric attaining a practical reliability target of false alarm probability of 5% with 1% BLER SNR.
As support, we provide link level simulations results for periodic Channel Quality Information and RI in LTE with 4,6 and 8 control information bits considering a False alarm target of 5% with 1% BLER CQI SNR.
Let us provide the following assumptions and notations:
· All transmission mode, periodic CQI information bits number K belongs to the set {4,6,8}
· ∆: denotes the correlation matrix at the output of the Hadamard transform FHT of size 2(K-1) during the CQI decoding process .
· θmax1 denotes the highest magnitude value in | ∆ |.
· θmax2 denotes the second highest magnitude value in | ∆ |.

Metric Definition: Let us define the duo metric reliability metric as :
 m0 = θmax1 / θmax2
Let us recall the reliability probability definition.
False Alarm Probability P(OK|KO): Probability that the decoded CQI is judge2 d to be reliable given that it is decoded wrongly.
P(OK|KO) = occ(m0>Threshold)/occ(KO decoding)
The occ() function denotes the occurrence number for an event. Figure 3-5 shows the FAR and BLER for different block sizes 4, 6, and 8 bits of UCI. At 1% BLER, we see that metric in RM provides good error detection capability without having separate error detection with CRC bits.

[image:]
Figure 3: Reliability performance for 4 bits Transmission Mode 2, AWGN
[image:]
Figure 4: Reliability performance for 6 bits Transmission Mode 4 RI 1, AWGN

[image:]
Figure 5: Reliability performance for 8 bits Transmission Mode 4 RI 2, AWGN

The error detection of the RM is equivalent to 4-5 CRC bits which is valuable property at the lowest block size region. The Polar code does not have such error detection capability and may often require a higher amount of CRC bits if CRC-aided list decoders are used. Also, PC-Polar will have an additional overhead with the parity bits. Considering all these aspects, we see that RM should be the best possible candidate for very small block sizes in eMBB control channel.
Observation 1: RM decoding with FHT or OSD provides inbuild error detection that is useful at very small block regions.
4. Performance
In the present section, we provide performance comparison for Reed-Muller codes with 4,6,8,11 information block sizes and 20, 32, 48 bits coded block sizes under FHT decoding compared to PC-Polar code with the same dimension and coding rate. For PC-Polar, we consider extra 4 CRC bits to have a fair comparison with Reed-Muller, and both codes then provide a similar FAR performance.
For the 20 and 32 bits cases, we consider LTE Reed-Muller matrices available in [4] and Annex 1. For the 48 bits case, we use the (11,32) Reed-Muller code with repetition.
We also provide a comparison of DUO-RM construction described in [4] for PUCCH Format 3, 4, 5 with 14, 17, 22 information bits and 64 bits codelength, that we compare to a (22,64) Reed-Muller code is constructed by considering the first highest Hamming weight rows of the 64-mother matrix as provided in Annex 1, all codes are decoded using OSD decoder and attain ML performance.

[image:]
Figure 6. Reed-Muller versus PC-Polar for information length K=4.

[image:]
Figure 7. Reed-Muller versus PC-Polar for information length K=6.

[image:]
Figure 8 . Reed-Muller versus PC-Polar for information length K=8.

[image:]
Figure 9. Reed-Muller versus PC-Polar for information length K=11.
[image:]
Figure 10. Comparison of DUO Reed Muller Code with Reed Muller Code for 64 bits codelength.

We observe a coding gain of 2 to 1 dB between Reed Muller code and PC Polar code for information length smaller than 11 bits.
Above 11 bits we observe a gain of 1 dB when we consider a complete Reed Muller code construction instead of a DUO RM construction. On another side Reed Muller outperforms PC Polar by 0.5 to 1 dB depending on the coding rate.
As Reed Muller codes are nested code one can consider a single mother code for the 20, 32 and 64 bits codelength.
We have also analyzed OSD decoder error patterns candidates number in Figure 11 , and we obtain an order of hundred patterns instead of 2^44 ones for the ML decoder which is intractable for this code. Whereas OSD decoder brings a number of candidate similar to the FHT decoder for the RM (11,32).

[image:]
Figure 11.Error pattern Candidate number with OSD decoding for RM (22,64) compared to ML decoder.
Proposal 1: Use LTE short block codes at least till 11 bits of control information.
Proposal 2: Extend Reed Muller code to a (22,64) one for information length between 11 and 22.

5	Conclusions
In this paper, we discuss short block coding solution for eMBB control channels and we have following observations and proposals.
Observation 1: RM decoding with FHT or OSD provides inbuild error detection that is useful at very small block regions.
Proposal 1: Use LTE short block codes at least till 11 bits of control information.
Proposal 2: Extend Reed Muller code to a (22,64) one for information length between 11 and 22.
References
[1] R1-074013, “CQI Coding Schemes”, Motorola
[2] R1-074334 “On CQI coding in PUCCH” Nokia Siemens Networks, Nokia
[3] R1-1611852, “Control Channel coding scheme evaluation”, LG Electronics.
[4] 3GPP TS 36.212: "Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and Channel Coding".
[5] R1-1703774, “Short Block codes for eMBB control channels”, Nokia, Alcatel-lucent Shaghai Bell
[6] 3GPP TS 36.104: “Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA);Base Station (BS) radio transmission and reception (Release 13)”
[7] G. D. Forney, “Exponential error bounds for erasure, list, and decision feedback schemes,” IEEE Trans. Information Theory, vol. 14, no. 2, pp. 206–220, March 1968
[8] Liva, Gianluigi, et al. "Code Design for Short Blocks: A Survey." arXiv preprint arXiv:1610.00873 (2016).
[9] Wei, Yuejun, et al. "A CRC-Aided Hybrid Decoding Algorithm for Turbo Codes." IEEE Wireless Commun. Letters 2.5 (2013): 471-474.
Annex 1
Table 1: Basis sequences for (32, k) code.
	i
	Mi,0
	Mi,1
	Mi,2
	Mi,3
	Mi,4
	Mi,5
	Mi,6
	Mi,7
	Mi,8
	Mi,9
	Mi,10

	0
	1
	1
	0
	0
	0
	0
	0
	0
	0
	0
	1

	1
	1
	1
	1
	0
	0
	0
	0
	0
	0
	1
	1

	2
	1
	0
	0
	1
	0
	0
	1
	0
	1
	1
	1

	3
	1
	0
	1
	1
	0
	0
	0
	0
	1
	0
	1

	4
	1
	1
	1
	1
	0
	0
	0
	1
	0
	0
	1

	5
	1
	1
	0
	0
	1
	0
	1
	1
	1
	0
	1

	6
	1
	0
	1
	0
	1
	0
	1
	0
	1
	1
	1

	7
	1
	0
	0
	1
	1
	0
	0
	1
	1
	0
	1

	8
	1
	1
	0
	1
	1
	0
	0
	1
	0
	1
	1

	9
	1
	0
	1
	1
	1
	0
	1
	0
	0
	1
	1

	10
	1
	0
	1
	0
	0
	1
	1
	1
	0
	1
	1

	11
	1
	1
	1
	0
	0
	1
	1
	0
	1
	0
	1

	12
	1
	0
	0
	1
	0
	1
	0
	1
	1
	1
	1

	13
	1
	1
	0
	1
	0
	1
	0
	1
	0
	1
	1

	14
	1
	0
	0
	0
	1
	1
	0
	1
	0
	0
	1

	15
	1
	1
	0
	0
	1
	1
	1
	1
	0
	1
	1

	16
	1
	1
	1
	0
	1
	1
	1
	0
	0
	1
	0

	17
	1
	0
	0
	1
	1
	1
	0
	0
	1
	0
	0

	18
	1
	1
	0
	1
	1
	1
	1
	1
	0
	0
	0

	19
	1
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0

	20
	1
	0
	1
	0
	0
	0
	1
	0
	0
	0
	1

	21
	1
	1
	0
	1
	0
	0
	0
	0
	0
	1
	1

	22
	1
	0
	0
	0
	1
	0
	0
	1
	1
	0
	1

	23
	1
	1
	1
	0
	1
	0
	0
	0
	1
	1
	1

	24
	1
	1
	1
	1
	1
	0
	1
	1
	1
	1
	0

	25
	1
	1
	0
	0
	0
	1
	1
	1
	0
	0
	1

	26
	1
	0
	1
	1
	0
	1
	0
	0
	1
	1
	0

	27
	1
	1
	1
	1
	0
	1
	0
	1
	1
	1
	0

	28
	1
	0
	1
	0
	1
	1
	1
	0
	1
	0
	0

	29
	1
	0
	1
	1
	1
	1
	1
	1
	1
	0
	0

	30
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	31
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

Table 2 : Basis Sequences for (20,K) code
	i
	Mi,0
	Mi,1
	Mi,2
	Mi,3
	Mi,4
	Mi,5
	Mi,6
	Mi,7
	Mi,8
	Mi,9
	Mi,10
	Mi,11
	Mi,12

	0
	1
	1
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0

	1
	1
	1
	1
	0
	0
	0
	0
	0
	0
	1
	1
	1
	0

	2
	1
	0
	0
	1
	0
	0
	1
	0
	1
	1
	1
	1
	1

	3
	1
	0
	1
	1
	0
	0
	0
	0
	1
	0
	1
	1
	1

	4
	1
	1
	1
	1
	0
	0
	0
	1
	0
	0
	1
	1
	1

	5
	1
	1
	0
	0
	1
	0
	1
	1
	1
	0
	1
	1
	1

	6
	1
	0
	1
	0
	1
	0
	1
	0
	1
	1
	1
	1
	1

	7
	1
	0
	0
	1
	1
	0
	0
	1
	1
	0
	1
	1
	1

	8
	1
	1
	0
	1
	1
	0
	0
	1
	0
	1
	1
	1
	1

	9
	1
	0
	1
	1
	1
	0
	1
	0
	0
	1
	1
	1
	1

	10
	1
	0
	1
	0
	0
	1
	1
	1
	0
	1
	1
	1
	1

	11
	1
	1
	1
	0
	0
	1
	1
	0
	1
	0
	1
	1
	1

	12
	1
	0
	0
	1
	0
	1
	0
	1
	1
	1
	1
	1
	1

	13
	1
	1
	0
	1
	0
	1
	0
	1
	0
	1
	1
	1
	1

	14
	1
	0
	0
	0
	1
	1
	0
	1
	0
	0
	1
	0
	1

	15
	1
	1
	0
	0
	1
	1
	1
	1
	0
	1
	1
	0
	1

	16
	1
	1
	1
	0
	1
	1
	1
	0
	0
	1
	0
	1
	1

	17
	1
	0
	0
	1
	1
	1
	0
	0
	1
	0
	0
	1
	1

	18
	1
	1
	0
	1
	1
	1
	1
	1
	0
	0
	0
	0
	0

	19
	1
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	0

Table 3 : Basis Sequences for (64,K) code

1 1
1 1 1 1 1 1 0 1 1 1 1 0 1 0 0 0 1 1 0 1 1 1
1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 0 1 1 1 1 0
1 1 1 0 1 1 0 1 0 0 1 0 1 0 0 0 0 1 0 1 1 0
1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 1 0 1 0 1 1
1 1 1 1 0 1 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 1
1 1 1 0 0 1 1 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0
1 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0
1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 0 1 1 0 0
1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 1 0 0 1 0 0
1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0
1 1 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0
1 1 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 0
1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0
1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 1 1 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1
1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 1
1 0 1 0 1 1 1 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0
1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0
1 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0 1 0 1 0 1 1
1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1
1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0
1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 1 1 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 0
1 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0
1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 0 0 1
1 1 0 1 1 1 0 0 1 1 1 0 1 0 0 0 0 1 0 0 0 1
1 1 0 0 1 1 1 0 0 0 1 1 1 0 1 1 0 1 0 0 0 0
1 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0
1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 0 0 0 0 0 0 1
1 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1
1 1 0 0 0 1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 1 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0
1 1 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0
1 0 0 1 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1
1 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1
1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0
1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1
1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0
image1.emf
-14-13-12-11-10-9-8-7-6-5-4

SNR

10

-4

10

-3

10

-2

10

-1

10

0

P(KO to OK)

CQI BLER

image2.emf
-14-13-12-11-10-9-8-7-6-5-4

SNR

10

-4

10

-3

10

-2

10

-1

10

0

P(KO to OK)

CQI BLER

image3.emf
-14-13-12-11-10-9-8-7-6-5-4

SNR

10

-4

10

-3

10

-2

10

-1

10

0

P(KO to OK)

CQI BLER

image4.emf
-12-10-8-6-4-202468

EsNo (dB)

10

-4

10

-3

10

-2

10

-1

10

0

B

L

E

R

K = 4, N = 20 PC Polar

K = 4, N = 32 PC Polar

K = 4, N = 48 PC Polar

K = 4, N = 20 RM

K = 4, N = 32 RM

K = 4, N = 48 RM

image5.emf
-12-10-8-6-4-202468

EsNo (dB)

10

-4

10

-3

10

-2

10

-1

10

0

B

L

E

R

K = 6, N = 20 PC Polar

K = 6, N = 32 PC Polar

K = 6, N = 48 PC Polar

K = 6, N = 20 RM

K = 6, N = 32 RM

K = 6, N = 48 RM

image6.emf
-12-10-8-6-4-202468

EsNo (dB)

10

-4

10

-3

10

-2

10

-1

10

0

B

L

E

R

K = 8, N = 20 PC Polar

K = 8, N = 32 PC Polar

K = 8, N = 48 PC Polar

K = 8, N = 20 RM

K = 8, N = 32 RM

K = 8, N = 48 RM

image7.emf
-12-10-8-6-4-202468

EsNo (dB)

10

-4

10

-3

10

-2

10

-1

10

0

B

L

E

R

K = 11, N = 20 PC Polar

K = 11, N = 32 PC Polar

K =11, N = 48 PC Polar

K =11, N = 20 RM

K =11, N = 32 RM

K =11, N = 48 RM

image8.emf
-4-3-2-101234

EsNo (dB)

10

-4

10

-3

10

-2

10

-1

10

0

B

L

E

R

RM (14,64)

RM (17,64)

RM (22,64)

DUORM (14,64)

DUORM (17,64)

DUORM (22,64)

PC Polar (14,64)

PC Polar (17,64)

PC Polar (22,64)

image9.emf
-4-3-2-101234567

EsNo (dB)

10

2

10

3

10

4

10

5

10

6

P

a

t

t

e

r

n

N

u

m

b

e

r

Complexity Performance RM (22,64)

RM (22,64) OSD order 2 param 1

RM (17,64) OSD order 2 param 2

RM (14,64) OSD order 1 param 2

ML Candidate number

