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Introduction
[bookmark: _GoBack]In RAN1 #86 and #86bis, an LDPC code description framework was presented in [2][3] which can support IR HARQ, multiple code rates, and scalable blocklengths using an approach of nested basegraphs with clustered lifts. This was also reviewed recently in [4], with additional clarifications added with respect to the rate matching scheme. The performance results of such constructions are well documented in [2][3]. 
It has been agreed RAN #88bis [1] that  is to be selected from either 256, 320 or 512. In this contribution, the performance of the proposed design in [4] with  = 512 and 320 are shown, which is based on the design principles first given in [2]. We also demonstrate weaknesses in other proposal with  given in [5] and [6] relative to [4]. Since the performance of   is very well understood by now from [2][4], we do not expect much difference for further description complexity at 256 and therefore not compare extensively between 256 and 320. In fact, the design in [2] with  was presented many meetings prior at RAN1 #86, and has been verified by multiple companies to have robust and consistent performance for all blocklengths and rates, and establishing a stable design benchmark.
Here the salient design aspects of [4] are analyzed with regarding to achieving the requirements of NR channel coding. Moreover, we illustrate their importance by comparing against other alternative approaches namely [5] and [6]. In many cases, alternative approaches can lead to degradations which can limit the ability of LDPC to achieve requirements of NR across both performance and implementation. Overall, this contribution demonstrates the advantages of coding scheme in [4] over other approaches, thus providing a robust solution for the EMBB data channel.
Performance considerations
The LDPC codes being proposed for NR channel coding should not only have good performance, i.e., lowest EsN0, at codeword error rate (BLER) of 0.01 but should also show good performance consistently down to a BLER of 1e-4 when considering simulations over the AWGN channel using floating point and fixed-point decoders. Indeed, in a practical implementation there will be losses in the performance due to a number of reasons such as channel modelling errors, SNR mismatch etc. and quantization/saturation of LLRs which also cause error-floors and performance degradation [10]. An important performance criteria brought up in the last few RAN1 meetings has been the robustness of the code design to finely granular blocklength. The other important performance criteria is robustness to decoder details such as saturation and quantization (precision) of the messages. Above performance criteria, along with a small description complexity, would provide a robust coding solution for NR and also future-proof the design.
Baseline performance of design proposal in [4]
In [4], LDPC codes with  and  are presented. Both these families are options for the highest family in a multiple base graph solution for NR. Both the families use clustered liftings as explained in [4]. In [4] it was shown that the challenges of NR LDPC design can also be made feasible by a code design with  or in other words on a base graph with base information bit-columns in the range [16, 20]. 
The main focus of performance comparison in this contribution is with the  design. The proposed  design has the base graph with information bit-columns, , between 16 and 20. This provides freedom in design to achieve robust and consistent performance across all blocklengths, rates and decoder implementation details. Furthermore, it also restricts the shortening at the level of the base graph to be at most in the range [16, 20]. This ensures that the performance remains robust across various solutions in the family involving base graphs of different sizes. In [5] and [6], the design uses  with maximum base information bit-columns to be 16. If the lifting values are not carefully chosen, the restriction of the base graph size to 16 could lead to deep shortening which could cause degradation in performance. In an earlier reincarnation of the design in [6], the lifting values chosen were too coarse giving rise to deep shortening at the level of the base graph and consequent performance degradation. 
The performance of the proposed LDPC codes in [4] with and  is robust under single-bit granularity in blocklength. Below, in figure 2, we demonstrate this robustness for 16-bit blocklength granularity of the LDPC code design with . This family is essentially the same as the highest family proposed in [2] with addition of a couple of edges and slightly larger description complexity. In the simulation set-up codes were generated for rates 1/5, 1/3, 2/5, ½, 2/3, ¾, 5/6, 8/9 for K = 100 to 8000 in the steps of 16 bits. The AWGN channel was considered and floating point SP decoder with max 50 flooding iterations was used.
It is observed that the performance is smooth across the entire range. Indeed, the proposed design allows for at most Z bits (lift size) to be shortened/punctured after selecting the appropriate base graph. This is equivalent to shortening/puncturing of one base-column. Since the construction guarantees good performance for each (nested) base graph, the sub-base-column shortening/puncturing retains the performance and hence the scheme is robust under single-bit blocklength scaling. We note that the maximum difference of around 0.15 dB at larger blocklengths is because of the codes from the lowest family. However, as shown in next few sections, the lowest family would not be used for large blocklengths. Hence the curves would be even smoother.
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Figure 1: Robustness of performance to blocklength scaling across all rates for codes in [4] with Zmax=320.
Below, in Figure 2, we demonstrate this robustness for 16-bit blocklength granularity of the LDPC code design with . In the simulation set-up codes were generated for rates 1/5, 1/3, 2/5, ½, 2/3, ¾, 5/6, 8/9 for K = 100 to 8000 in the steps of 16 bits. The AWGN channel was considered and floating point SP decoder with max 50 flooding iterations was used.
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Figure 2: Robustness of performance to blocklength scaling across all rates for codes of [4] with . 

Observation 1: 
· The proposed LDPC codes in [4] provide consistent good performance with no error floor down to at least BLER of 1e-4.
· LDPC design in [4] provides single-bit granularity in blocklength with low description complexity while maintaining good performance.
· The nested base graphs for any family in [4] has consistent good performance across the range of the base info-columns. I.e., performance of base graphs, within a family, with  in the range , at the same code-rate and comparable blocklengths, are close to each other.
· It is found in [4] that the choice (,  = 30),  ( ,  = 20)  and ( ,  = 10)  has consistent good performance and robustness to fine granularity blocklength for the two highest and the lowest family base graphs respectively.

Issues with compact base graph of [5] and [6]
[bookmark: _Ref378529477]The size and the structure of the base graph are important parameters in the design of QC-LDPC codes. If the size of the base graph is small or compact as is for some codes in [5] and [6] with , then the performance degrades if the small base graph is lifted to a large blocklength and operated at high rate. In [9], it was shown extensively that the proposed LDPC designs [8] with constraints such as  and row-orthogonality, showed performance degradation and high error-floors. In this contribution we demonstrate that these constraints still lead to non-robust performance. 
Inconsistent performance at fine granularity
LDPC code designs proposed in [5] and [6] have small base graph size, i.e.,  , which is used to generate codes for every K and N. The codes in [5] have a set of lifts defined for all integers in the range [8, 512]. Such fine granularity in Z is unnecessarily given that performance requirements can be met with larger lifts as shown in [4], and moreover a simplified description could be advantageous for hardware implementations. Therefore it is desired to have a coarser set of lifts defined for NR LDPC codes. Figure 3 shows the granularity simulations for the codes in [6]. It shows that the required EsN0 at BLER of 1e-4 is not smooth. This is mainly due to the presence of error floors shown in Figure 4. We note that the SP decoder set the maximum LLR value to be ~ 84 and used 50 flooding iterations.
In [4], it is found that both the highest family, which supports highest (absolute value) rates, provide a fair balance between performance and achievable parallelism. Furthermore, for each family in [4], the entire structure has been optimized (offline) for connections to provide good performance at low complexity across all of the nested subgraphs in the range .
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	Figure 3: Performance of codes in [5] (above) shows error floors and [6] (below) is not smooth. 
(Note also issue at R=5/6 for [6].)
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Figure 4: Error floor observed in [6] when lifted to large blocklengths. The SP decoder used a max LLR magnitude of ~ 84 and 50 flooding iterations. The dashed curves represent the performance of codes High #1 in [4].

Observation 2: LDPC codes in [6], which have small base graphs lifted to large values, show error floors starting around BLER of 1e-3. 

Sensitivity to decoder implementations
It is observed that codes in [5] and [6] are sensitive to decoder implementation details. More precisely, we observe that changing the saturation value of the messages in the decoder severely affects the error floor. This is demonstrated in figures 5 and 6. Several decoder algorithms and saturation levels are used in this experiment. The decoder algorithms used are the sum-product decoder (SP), the minsum decoder (MS) and the adjusted minsum decoder (AdjMS) [10]. The maximum LLR magnitude (denoted as maxLLRmag in the figures), also called as the saturation level of the messages takes on different values for each decoder. It is observed that both the code designs in [5] and [6] show severe sensitivity to saturation of messages for all decoding algorithms such as SP, MS, AdjMS. 
In both code designs, the base graph with kb_max <= 16 gives rise to numerous bad trapping sets which cause the error floors to rise with saturation. Such sensitivity of the error floor to the decoder implementation has been observed in [11], [12].

[image: ]

Figure 5: Sensitivity of code design in [6] to saturation of messages for all types of decoder, namely, SP, MS, AdjMS.
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Figure 6: Sensitivity of code design in [5] to saturation of messages for all types of decoder, namely, SP, MS, AdjMS.

Observation 3: LDPC codes in [5] and [6] both show sensitivity to saturation and quantization of messages. The effect is manifested by severe degradation of the error floor. 

Conclusions
Observation 1: 
· The proposed LDPC codes in [4] provide consistent good performance with no error floor down to at least BLER of 1e-4.
· LDPC design in [4] provides single-bit granularity in blocklength with low description complexity while maintaining good performance.
· The nested base graphs for any family in [4] has consistent good performance across the range of the base info-columns. I.e., performance of base graphs, within a family, with  in the range , at the same code-rate and comparable blocklengths, are close to each other.
· It is found in [4] that the choice (,  = 30),  ( ,  = 20)  and ( ,  = 10)  has consistent good performance and robustness to fine granularity blocklength for the two highest and the lowest family base graphs respectively.

Observation 2: LDPC codes in [6], which have small base graphs lifted to large values, show error floors starting around BLER of 1e-3. 
Observation 3: LDPC codes in [5] and [6] both show sensitivity to saturation and quantization of messages. The effect is manifested by severe degradation of the error floor. 
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