3GPP TSG RAN WG1 #88bis Meeting 										R1-1705857
Spokane, WA, USA, 3rd - 7th April, 2017

Agenda item:		8.1.4.1.2
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Source:	Nokia, Alcatel-Lucent Shanghai Bell
Title:	LDPC design for eMBB
Document for:		Discussion and Decision
1	Introduction
LDPC design discussion for eMBB had several agreements during last few meetings. According to the latest agreement [1], at least one base graph should have the 802.11n like dual diagonal structure (some variants still applicable) should be considered in the parity check matrix design.
Working Assumption:
· For at least one base graph,
· the parity check matrix consists of five sub-matrices (A, B, C, D, E)
A

C
D
E
B

· A may contain systematic and parity bits
· B:
· B is not necessarily square
· One of the columns has weight-three
· The columns of B after the weight-three column have a dual diagonal structure, e.g.:
[image:]
· C is a zero matrix
· E is an identity matrix for the above base graph
· Other structures can be considered for other base graph(s), if any
· Can be revisited if another structure is shown to be superior in performance and complexity

In RAN1 #88bis meeting, following modifications were made on the aforementioned agreement.
Agreement:
Working Assumption from Jan adhoc is confirmed with modifications as follows:
· A corresponds to systematic bits
· B is square and corresponds to parity bits
· The first or last column may be weight 1
· The non-zero value is in the last row and this row is weight 1 in B
· If there is a weight 1 column, then the remaining columns contain a square matrix such that:
· First column has weight three
· The columns after the weight three column have a dual diagonal structure (i.e., main diagonal and off diagonal)
· If there is no weight 1 column
· B consists of only a square matrix such that:
· First column has weight three
· The columns after the weight three column have a dual diagonal structure (i.e., main diagonal and off diagonal)
E.g.:
[image:]

However, matrices B, C, and E are defined in the agreement and valid at least for one base graph. Referring to the number of base graphs, companies still considering different options and number of base graphs can be 1 and 2. In particular RAN1 #88 agreed:
Agreement:
· Number of base graphs for eMBB is FFS between 1 and 2
· Evaluate the potential gains from 2 base-graphs compared to a single base-graph until RAN1#88bis

The base graph that supporting the largest code block size should be capable of supporting throughput requirements of NR eMBB scenario. The following agreement is capturing the agreement RAN1 #88 had on that.
Conclusion for some code design targets:
· At least support 20Gbps decoder information throughput with code rate 8/9
· Also aim for good throughput performance at lower code rate(s)
· FFS the details of how to assess throughput performance at lower code rates, including whether the assessment is relative or absolute, and other constraints (e.g. complexity)
In this contribution, we provide the details of revised LDPC design for the eMBB considering all the agreements we highlighted above.
[bookmark: OLE_LINK9][bookmark: OLE_LINK10][bookmark: OLE_LINK13][bookmark: OLE_LINK14]2	LDPC coding scheme for eMBB
Code construction is mainly based on two proto-matrices to handle small and large block sizes that we expect in the eMBB scenario. In last few meetings, many companies showed that majority of the traffic in uplink might use shorter block sizes, where we think particular attention is required even with LDPC codes. The number of base graphs itself does not affect the implementation complexity, where implementation complexity mainly determined by the base graph dimensions, supported block sizes (or shift network configuration), row/column weights, and other related parameters.
In the rest of the discussion, we use the following structure for the parity check matrix (PCM), H, which represents QC LDPC codes.
 ,
where is a cyclic-permutation matrix obtained from the zero matrix and the z by z cyclically shifted identity matrix to the right. Also, often represented as a numerical entry in the matrix in the following discussion.
According to the agreement below, the LDPC base graph that support Kmax should be limited to the minimum code rate of 1/3. However, other blocks can support much lower rates down to 1/5.
Agreement:
· Base graph for supporting Kmax has minimum code rate Rmin,kmax = ~1/3
· ‘~’ means approximately
· This does not preclude extending the same base graph to code rate lower than ~1/3 when supporting K< Kmax, provided that the number of variable nodes (after lifting) of any parity check matrix, Nmax, is not exceeded, where:
· Nmax = Kmax / Rmin,kmax + Nsys,punct
· Nsys,punct is the number of built-in punctured systematic bits
· Base graph for any info block sizes K has
· Rmin,k >= ~1/5, provided that Nmax is not exceeded

We follow the agreement and propose two base graphs for according to block sizes. The coding families are summarized in Table 1.
Table 1: LDPC coding families
	Code Family
	Block sizes
	Max code rate
	Min code rate
	Sub-matrix dimension

	
	
	
	
	Min
	Max
	Granularity

	1
	100 – 1000
	2/3
	1/5
	10
	100
	Select optimum sub-set within 10 - 100

	2
	1000 – 8192
	8/9
	1/3
	32
	256
	32:1:128
128:2:192
192:4:256

2.1 	Family 1: Short block sizes
Family 1 is mainly designed such that it provides good performance for lower code block sizes, up to K = 1000. The parity check matrix for Family 1 is shown in Annex I. The highest code rate the base graph is 2/3 and extended to the lowest rate of 1/5 . The codes are optimized for heavy shortening, puncturing and repetition. A blanking based extension is used to get the base graphs for different rates.
The reason to define the matrices like these is that each code rate has its optimal check node degree distributions, and with the proposed structure, performance is optimized. Furthermore, these codes can be decoded by the same decoder, since they share the common structure.
These codes support info block size K from 100 up to 1000. The matrices were designed with sub-matrix size 40. If smaller submatrix size is used, modulo lifting is applied. These codes are optimized for puncturing, and provide good performance for a wide range of code rates.
Both CC and IR HARQ can be supported with the proposed matrices. Since these codes tolerate heavy puncturing, incremental redundancy is possible. An ordinary circular buffer can be used, but there is one limitation compared to turbo codes: we have to choose what matrix is used. This selection is a matter of link adaptation. Once selected, we stay within that matrix. In some situations, this limitation may impact IR gains. Further investigations on the gains we get one first transmission versus small losses in IR transmissions should be investigated.
Overall, base graphs of Family 1 share common elements and can be decoded by the same decoder. The base matrix dimensions, shift network sizes are small which allows an efficient implementation.
Proposal 1: NR eMBB scenario requires a separate base graph to support lower block sizes. The performance of the base matrix can be optimized by adopting blanking based extension.
Proposal 2: Optimal shortening/puncturing/repetition combination should be used with sub-matrix dimensions to support different block sizes.

2.2 	Family 2: Larger block sizes
Large code blocks should be used when supporting moderate to higher throughputs in the eMBB scenario. The implementation complexity of LDPC codes is mostly defined by the hardware requirements when decoding larger block sizes. Therefore, this requires implementation related considerations rather than just focusing on the performance of the codes.
Proposal 3: LDPC codes for large block size should support good performance and implementation efficiency.
2.2.1 	Code block support
This PCM family is mainly designed to support information block sizes above 2000 bits. However, this does not have issues even to support lower range of block sizes. Nevertheless, we see that optimized approach used in Family 1 is more suited to provide better performance at smaller block sizes. The proposed PCM is attached with the contribution as a separate Excel file. The maximum cyclic-permutation value in the base matrix is fixed to 256, and the maximum support block size is 256*32=8192 bits. The base matrix can be viewed as an extended base graph which we believe providing more freedom when optimizing for performance. Shift values for different code block sizes are obtained using simple modulo operation. The code itself support finer granularity of sub-matrix dimension Z. However, to simplify implementation complexity, Z granularity equal to one is preferred between 32-to-128 shift sizes, the granularity of two is preferred for 128-to-192 shift sizes, and it can be four for shift sizes above 192.
Proposal 4: The largest info block size supported by LDPC encoder Kmax and the largest shift size Zmax defined for a H matrix should be {8192, 256} to provide a good trade-off between performance and implementation complexity.

2.2.2 	Code rate and HARQ support
In this PCM family, PCM for lower code rate are generated by extension from the PCM for higher code rate. The PCM family is a rate-compatible code as shown in Figure 1, so IR HARQ can be supported by transmitting more parity bits in retransmission.

Figure 1: Structure of the Family 2 base graph
The design target for highest supported code rate is 8/9. Some parity bits for rate 8/9 can be punctured to support higher code rates than 8/9. The information bits corresponding to the first 2*z columns are punctured, so the base matrix with total size as 66*98 can support the minimum code rate as 32/(98-2)=1/3. Repetition can be used to support lower code rate than 1/3.
The extension part is divided into multiple parts, with each part containing multiple rows. All these parts are generated by dividing one same vector into multiple rows so that the multiple rows are orthogonal to guarantee only one layer decoder is needed for each part. For each part, the one vector is firstly divided into multiple orthogonal rows, then a proper cyclic shift for the whole part is searched, and some columns are replaced by all -1 to guarantee good performance. The generated part can be extended by inserting some columns with all -1. In the generation, the same vector is used to guarantee the cyclic-permutation values in each part, with each part corresponding to one layer, are from the same set corresponding to the vector. Based on this structured design the shifting network part can be same or shared by multiple parts and requested optimization effort will be reduced. Cyclic shifting is used to search the good performance in freedom of low-ratio of small cycles between parts corresponding to different layers. The processing can be as Figure 2.

Figure 2: An example for PCM generation based on same vector to generate different layer by division to multiple orthogonal rows and cyclic shift
Based on the above processing, we can also put one non-negative value in each column of the punctured block and still keep the row orthogonality feature for each layer. So, weights for punctured columns are related to the number of layers, providing that performance can be improved by increasing the number of layers. Obviously, the number of layers and number of rows in each layer can be optimized for a good trade-off between performance and implementation efficiency. In the proposed PCM, we consider 24 layers at rate 1/3, and there is one non-negative value for each punctured column in all the layers.
In [2], we provide simulation results for the proposed code, and we see that the proposed structured method, i.e. one vector for generation of multiple layer and cyclic shift, can provide good performance together with the row-orthogonality.

2.2.3 	Implementation aspects
When the base matrix is generated by using one vector and mapping it to multiple orthogonal rows and cyclic shifting, the shifting network used at different layers can be the same. Also, one set of cyclic shifts can be used by many other layers. As shifting network does not need to be changed from layer to layer, the decoding latency can be reduced. Overall decoding throughput and latency are much better compared to a randomized design with the same row-orthogonality.
Observation 1: The decoding latency and implementation efficiency can be improved based on the Family 2 base graph.
Proposal 5: The proposed structured method should be considered in the PCM generation, e.g. one vector for generation of multiple layer and cyclic shift, to improve the implementation efficiency.
The complexity of this kind of design versus quasi-row orthogonal or any other matrix structure can be significantly different as this allows much more freedom in terms of row-orthogonality and re-using of shifting network. Companies highlighted benefits of quasi-row orthogonality and argued that it provides some level of orthogonality in the base graph and improves the decoding throughput. We like to highlight that there is nothing called quasi-row orthogonality for given matrix, it can be row-orthogonal or not. The only way to categorize quasi row-orthogonality is to highlight that it uses flooding of two columns to get the same benefits as a row-orthogonal base graph. We also need to remember that flooding associated with a significant level of complexity compared to all other decoder architectures.
[bookmark: _GoBack]A base graph may have conflicts when decoding by a multi-core block parallel decoder, and then conflict resolution is needed. One method would be stop-and-wait till all LLRs from above layer are updated, which leads to higher latency. The second method would be to continue decoding with old LLRs, and this may reduce the performance for a given iteration and results in more iterations. With the proposed Family 2 base graph, we do not expect this kind of situation and could provide a good error performance with high throughput implementations.
Observation 2: Conflicts should be avoided to guarantee low latency of LDPC with iterative decoding.

3	Conclusion
In this contribution, we propose code construction details of LDPC for the eMBB data channel and we have following observations and proposals.
Observation 1: The decoding latency and implementation efficiency can be improved based on the Family 2 base graph.
Observation 2: Conflicts should be avoided to guarantee low latency of LDPC with iterative decoding.
Proposal 1: NR eMBB scenario requires a separate base graph to support lower block sizes. The performance of the base matrix can be optimized by adopting blanking based extension.
Proposal 2: Optimal shortening/puncturing/repetition combination should be used with sub-matrix dimensions to support different block sizes.
Proposal 3: LDPC codes for large block size should support good performance and implementation efficiency.
Proposal 4: The largest info block size supported by LDPC encoder Kmax and the largest shift size Zmax defined for a H matrix should be {8192, 256} to provide a good trade-off between performance and implementation complexity.

Proposal 5: The proposed structured method should be considered in the PCM generation, e.g. one vector for generation of multiple layer and cyclic shift, to improve the implementation efficiency.

References
[1] RAN1 Chairman’s notes, Ran1 #NR Ad-Hoc, Spokane, U.S.A.
[2] R1-1705858 “Performance of LDPC designs for eMBB”, Nokia, ASB
[3] R1-1705859, “Implementation aspects of LDPC codes”, Nokia, ASB
Annex I
For Family 1, the extensions with blanking are given as following.
First matrix:
 11 3 20 -1 28 5 31 35 2 1 0 -1 -1 -1 -1
 22 27 6 2 11 9 25 0 -1 22 -1 0 -1 -1 -1
 12 12 -1 6 14 9 6 -1 37 -1 32 -1 0 -1 -1
 28 15 15 -1 -1 -1 -1 26 -1 19 -1 5 37 0 -1
 3 33 21 5 -1 34 -1 -1 5 -1 -1 33 24 21 0

Second matrix:
 11 3 -1 -1 -1 -1 31 35 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 22 27 -1 -1 11 -1 25 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 12 -1 -1 6 -1 -1 -1 -1 -1 -1 32 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 28 15 15 -1 -1 -1 -1 26 -1 19 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 33 21 -1 -1 -1 -1 -1 5 -1 -1 -1 24 -1 0 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 3 -1 -1 36 -1 -1 -1 -1 -1 -1 19 23 12 0 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 24 11 -1 28 -1 2 32 36 -1 -1 39 -1 0 -1 -1 -1 -1 -1 -1
 -1 -1 39 -1 4 -1 35 -1 -1 -1 -1 -1 -1 -1 11 3 31 0 -1 -1 -1 -1 -1
 20 -1 -1 0 -1 1 -1 -1 -1 21 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1
 -1 7 -1 37 -1 -1 -1 -1 -1 -1 -1 -1 39 -1 -1 -1 -1 12 16 0 -1 -1 -1
 33 39 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 17 0 -1 -1
 5 -1 -1 -1 -1 -1 -1 -1 39 -1 -1 -1 -1 -1 -1 -1 18 -1 -1 14 16 0 -1
 -1 -1 -1 13 -1 -1 -1 -1 37 -1 -1 -1 11 -1 -1 28 -1 -1 -1 19 -1 -1 0

Third matrix:
[-1 3 -1 -1 -1 -1 31 35 -1 -1 0 -1;
 22 -1 -1 -1 11 -1 25 -1 -1 -1 -1 0 -1;
 12 -1 -1 6 -1 -1 -1 -1 -1 -1 32 -1 0 -1;
 28 15 -1 -1 -1 -1 -1 26 -1 19 -1 -1 -1 0 -1;
 -1 33 21 -1 -1 -1 -1 -1 5 -1 -1 -1 24 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1;
 -1 -1 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 19 23 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1;
 -1 -1 -1 -1 24 11 -1 -1 -1 -1 32 36 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1;
 -1 -1 -1 -1 4 -1 -1 -1 -1 -1 -1 -1 -1 -1 11 3 31 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1;
 20 -1 -1 0 -1 1 -1 -1 -1 21 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1;
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 39 -1 -1 -1 -1 12 16 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1;
 33 39 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 17 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1;
 5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 18 -1 -1 14 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1;
 -1 -1 -1 13 -1 -1 -1 -1 -1 -1 -1 -1 11 -1 -1 28 -1 -1 -1 19 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1;
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 13 -1 -1 26 -1 38 -1 -1 21 -1 -1 13 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1;
 34 -1 -1 -1 -1 -1 19 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 19 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1;
 26 28 -1 -1 -1 6 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 36 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1;
 21 37 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 14 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1;
 -1 26 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 11 -1 -1 -1 22 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1;
 30 -1 -1 -1 -1 -1 -1 -1 19 -1 -1 -1 -1 -1 -1 -1 -1 -1 37 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1;
 -1 -1 -1 -1 -1 -1 -1 -1 9 -1 -1 -1 -1 -1 29 -1 -1 -1 -1 20 -1 -1 -1 13 -1 -1 -1 -1 -1 0 -1 -1 -1 -1;
 39 -1 14 -1 15 0 -1 -1 -1;
 -1 4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 30 -1 -1 0 -1 -1;
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 18 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 34 -1 -1 0 -1;
 -1 4 -1 -1 -1 -1 -1 5 -1 -1 9 -1 -1 -1 -1 -1 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 31 -1 1 0];

Fourth matrix:
 -1 -1 -1 -1 -1 -1 31 35 -1 -1 0 -1
 22 -1 -1 -1 11 -1 25 -1 -1 -1 -1 0 -1
 12 -1 -1 6 -1 -1 -1 -1 -1 -1 32 -1 0 -1;
 28 15 -1 -1 -1 -1 -1 26 -1 19 -1 -1 -1 0 -1;
 -1 33 -1 -1 -1 -1 -1 -1 5 -1 -1 -1 24 -1 0 -1;
 -1 -1 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 19 23 -1 0 -1;
 -1 -1 -1 -1 24 11 -1 -1 -1 -1 32 36 -1 -1 -1 -1 0 -1;
 -1 -1 -1 -1 4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 31 0 -1;
 20 -1 -1 -1 -1 1 -1 -1 -1 21 -1 -1 -1 -1 -1 -1 -1 -1 0 -1;
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 39 -1 -1 -1 -1 12 16 0 -1;
 33 39 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1;
 5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 18 -1 -1 14 -1 0 -1;
 -1 -1 -1 13 -1 -1 -1 -1 -1 -1 -1 -1 11 -1 -1 28 -1 -1 -1 -1 -1 -1 0 -1;
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 26 -1 38 -1 -1 21 -1 -1 -1 0 -1;
 34 -1 -1 -1 -1 -1 19 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 19 -1 -1 -1 -1 -1 -1 0 -1;
 26 28 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 36 -1 -1 -1 -1 -1 0 -1;
 21 37 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 14 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1;
 -1 26 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 11 -1 -1 -1 22 -1 -1 -1 -1 -1 -1 -1 -1 0 -1;
 30 -1 -1 -1 -1 -1 -1 -1 19 -1 -1 -1 -1 -1 -1 -1 -1 -1 37 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1;
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 29 -1 -1 -1 -1 20 -1 -1 -1 13 -1 -1 -1 -1 -1 0 -1;
 39 -1 15 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1;
 -1 4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 30 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1;
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 18 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 34 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1;
 -1 4 -1 -1 -1 -1 -1 5 -1 -1 9 -1 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1;
 -1 -1 -1 11 -1 -1 -1 -1 23 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 26 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1;
 4 -1 -1 35 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1;
 -1 -1 -1 -1 -1 -1 -1 -1 -1 37 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 32 -1 -1 38 -1 -1 -1 -1 -1 -1 21 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1;
 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 22 -1 -1 -1 -1 -1 -1 -1 -1 5 -1 -1 -1 -1 -1 -1 -1 37 -1 -1 26 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1;
 -1 17 -1 -1 -1 -1 33 -1 -1 -1 -1 -1 -1 22 33 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1;
 -1 25 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 4 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1;
 -1 32 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 39 -1 -1 -1 -1 -1 -1 -1 -1 20 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1;
 30 -1 35 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1;
 -1 -1 4 -1 9 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 22 -1 31 2 -1 -1 0 -1 -1 -1 -1 -1 -1 -1;
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 38 -1 -1 -1 -1 -1 -1 2 -1 -1 -1 16 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1;
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 8 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 11 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1;
 6 -1 38 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 38 -1 -1 0 -1 -1 -1 -1;
 -1 12 -1 19 -1 -1 -1 -1 -1 -1 -1 -1 4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1;
 -1 -1 34 -1 -1 -1 -1 -1 -1 -1 12 -1 0 -1 -1;
 -1 12 18 -1 -1 2 -1 -1 -1 -1 0 -1;
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 36 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 32 -1 -1 -1 -1 23 -1 -1 30 20 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0

image1.emf
11

11

111

11

11

image2.png

image3.emf
0

0

0

KN-KN

T

-N

Systematic bitspuncturing

1st Tx. PCM

Rate-compatiblePCMthat

supports IR HARQ

N-K

N

T

-N

oleObject1.bin
0

0

0

K

N-K

NT-N

Systematic bits puncturing

1st Tx. PCM

Rate-compatible PCM that supports IR HARQ

N-K

NT-N

image4.emf
P1P2P3P4P5P6P10P11P12

extension

P1P5

P11

P2P4P12

P3P6P10

P6P10

P11

P12

P2

P1P5

P3P4

Divide to

multiple rows

& cyclic shift

oleObject2.bin
P1

P2

P3

P4

P5

P6

P10

P11

P12

extension

P1

P5

P11

P2

P4

P12

P3

P6

P10

P6

P10

P11

P12

P2

P1

P5

P3

P4

Divide to multiple rows & cyclic shift

