3GPP TSG RAN WG1 #88bis meeting 										R1-1705854
Spokane, WA, USA, 3rd - 7th April, 2017

Agenda item:		8.1.4.1.1
Source:	Nokia, Alcatel-Lucent Shanghai Bell
Title:	Padding techniques for LDPC
Document for:		Discussion and Decision
1	Introduction
In Ran1 #87 meeting [1], LDPC was selected as the coding scheme of eMBB data. In particular, the following agreement was made,
Agreement:
· UL eMBB data channels:
· Adopt flexible LDPC as the single channel coding scheme for small block sizes
· (Note that it is already agreed to adopt LDPC for large block sizes)
· DL eMBB data channels:
· Adopt flexible LDPC as the single channel coding scheme for all block sizes
· UL control information for eMBB
· Adopt Polar Coding (except FFS for very small block lengths where repetition/block coding may be preferred)
· DL control information for eMBB
· Adopt Polar Coding (except FFS for very small block lengths where repetition/block coding may be preferred)

In Ran1 #NR ad-Hoc meeting [2], padding (shortening) for LDPC was discussed and the following agreement was made,
Agreement:
· Shortening is applied before LDPC encoding when necessary
· Working assumption: Filler bits F are attached at the end of info block B to form vector U = [B F]
· Can be verified at RAN1#88
· Vector U is the input to LDPC encoding
· The filler bits F are not transmitted

In this contribution, we discuss attentions required when finalizing the base graphs considering the aforementioned agreement and other padding (shortening) techniques that often useful with LDPC codes.
[bookmark: OLE_LINK9][bookmark: OLE_LINK10][bookmark: OLE_LINK13][bookmark: OLE_LINK14]2	Padding techniques
Padding is often considered when the info block size at the encoder does not satisfy required block size to encode. When LDPC codes do not support very fine granularity of block sizes with their shift network, the padding overhead can be higher. Puncturing of these padded bits is required to prevent significant losses in the spectral efficiency. In next sections, we discuss different techniques of padding which can be useful in various use cases that we expect within the eMBB data channel.

Figure 1: Padding to support encoding process
2.1	Zero padding
Zero padding is the most practical method of padding or filling, and commonly used by many other standards. In particular, the padding bits showed in Figure 1 are set to be zero bits. In most cases, these bits are punctured after encoding. These zero padding bits also increases the amount of parity bits, where we may have to puncture some bits in addition to the padded bits if we need to maintain exact spectral efficiency. At the decoder, we add these punctured zero padding bits with matching LLRs which often set as max/min LLR values. Zero padding can be applied to NR eMBB scenario when the number of CBs are small, padding overhead is significant, and simple operations are required.
2.1.1 	Position of padding bits
The working assumption says that the Filler bits, F, are attached at the end of info block B. In the following, we check the effect of padding bit position for QC-LDPC codes. We consider the following base matrix:
 -1 37 7 -1 -1 41 12 47 23 25 1 0 -1 -1 -1
 0 38 -1 -1 -1 -1 -1 6 -1 34 -1 0 0 -1 -1
 31 29 25 34 -1 -1 -1 -1 29 8 0 -1 0 0 -1
 11 24 -1 43 41 5 -1 -1 -1 -1 -1 -1 -1 0 0
 2 -1 28 24 13 -1 13 -1 47 7 1 -1 -1 -1 0

with submatrix size z = 52, defining a code with (n,k) = (780,520). We note that the column weights of the first 10 columns are [4 4 3 3 2 2 2 2 3 4].
We simulate this code with the z padding bits. This shortens the code to (n,k) = (728,468). The simulation is repeated for 10 different patterns for padding bit positions:
Pattern 1: [F B1 B2 B3 B4 B5 B6 B7 B8 B9]
Pattern 2: [B1 F B2 B3 B4 B5 B6 B7 B8 B9]
Pattern 3: [B1 B2 F B3 B4 B5 B6 B7 B8 B9]
Pattern 4: [B1 B2 B3 F B4 B5 B6 B7 B8 B9]
Pattern 5: [B1 B2 B3 B4 F B5 B6 B7 B8 B9]
Pattern 6: [B1 B2 B3 B4 B5 F B6 B7 B8 B9]
Pattern 7: [B1 B2 B3 B4 B5 B6 F B7 B8 B9]
Pattern 8: [B1 B2 B3 B4 B5 B6 B7F B8 B9]
Pattern 9: [B1 B2 B3 B4 B5 B6 B7 B8 F B9]
Pattern 10: [B1 B2 B3 B4 B5 B6 B7 B8 B9 F]

In the patterns above, F denotes z padding bits, and each Bd (d = 1, 2 …, 9) is a set of z information bits. Results are shown in Figure 2. Legend shows the pattern, and the column weight of the padding bits is shown next to each curve. The best performance is obtained when the padding bits are located in a column with weight 2.
[image:]
[bookmark: _Ref473291983]Figure 2: Performance of different padding bit positions; number of padding bits = z.

It is quite evident that the performance varies with the position of the shortening that we use. More importantly, appending padding bits at the end (Pattern 10) is not the optimal position to apply padding. For the base matrix we used for this simulation, Pattern 7 provides the best performance. However, this will change with different base matrix assumptions. Considering many other evaluations, we see that attaching padding bits on the positions with smaller column weights provide much better performance than the rest. In summary, the following observation can be made:
Observation 1: The optimal position of the padding bits is where the column weight of PCM is small.
If the padding positions are not optimized in the proposed LDPC base graphs, it would be good to check this further once the base graph is finalized. After the best position for padding is investigated, the column permutation should be performed to make sure that the padding can be performed done at the end of the information block size.
Proposal 1: Padding bit positions should be taken into account when specifying the PCM, where column permutation on the base matrix may be required.
2.2	Repeat padding
In repeat padding, information bits of a neighbouring CB are used as the padding to satisfy encoding requirements, then use this additional information is used to improve the performance of both code blocks. For example, the padding bits of the first CB is set by repeating of part of the information bits in the second CB. That can be continued for all other code blocks such that all blocks are repeating some information instead of zero bits. As the receiver, the initial LLR for repeat information bits can be exchanged depending on which received block goes through the decoder firstly and successfully passes the parity check (or CRC check). Then, the repeated bits can be used as known bits for the next received block. In this way, the padding bits are used to improve the performance of all CBs. There can be several ways to include RP depending on the decoding mechanism employed by the receiver.
An example of repeat padding is illustrated in Figure 3. After code segmentation, part of the CB 2 is repeated to fill the required information block to start encoding process of the CB1. The similar procedure continues till the last CB, i.e., CB L. RP added to the CB L is from the CB 1.

Figure 3: Repeating parts of previous CBs to support encoding process
At the receiver, decoding procedure for sequential processing is shown in Figure 4. When the decoding is successful for CB 1, corresponding LLRs of repetition bits in the second received block are updated, which now contains more reliable information to start the decoding process. This process continues for all other received blocks. For example, if previous CB is detected without error, some LLRs (repeated bits) in the current block can be updated as –Inf/Inf when repeated bits are -1/1. If the one CB (or few) are detected with error, decoder can keep decoding next CBs provide possibility of decoding the errored block in the next attempt with known bits that carried by successfully decoded CBs.

(a)

(b)

Figure 4: Example of decoding procedure (a) No errors for CB1 (b) Errors in CB1
The same principle can be applied to pipeline processing where padding can be done such a way that adjacent CBs are not used for padding. The first set of CBs can be padded with the second set of CBs rather than a sequential padding technique described above.
2.3	RNTI padding
[bookmark: _GoBack]Padding can also be used for user identification, where the bits which identify the receiver (such as RNTI) and/or transmitter, are used as known bits with channel code shortening. In particular, the data bits are multiplexed or padded with known UE id bits. These UE id bits can serve the purpose of padding. Figure 5 illustrate the encoding and decoding procedure for such kind of user identification with RNTI padding.

[image:]
[bookmark: _Ref452636036]
Figure 5 : Encoding and decoding procedure with RNTI padding

Even though the use of such user identification is not currently identified as a requirement of eMBB data, this kind of padding provide physical layer security features by not limiting the use of padding requirements for encoding.

Proposal 2: Different padding techniques should be used with LDPC codes to satisfy various requirements of NR.

3	Conclusion
In this contribution, we discussed several padding techniques to be used with LDPC codes and propose following,

Observation 1: The optimal position of the padding bits is where the column weight of PCM is small.
Proposal 1: Padding bit positions should be taken into account when specifying the PCM, where column permutation on the base matrix may be required.
Proposal 2: Different padding techniques should be used with LDPC codes to satisfy various requirements of NR.
References
[1] Ran1 Chairman’s notes, Ran1 #87, Reno, U.S.A.
[2] Ran1 Chairman’s notes, Ran1 #NR Ad-Hoc, Spokane, U.S.A.
image1.emf
Infopadding bits

Encoder

Infopadding bits

parity bits

oleObject1.bin
Encoder

Info

padding bits

Info

padding bits

parity bits

image2.emf
0.30.40.50.60.70.80.911.11.2

10

-2

10

-1

SNR (dB)

BLER

1

2

3

4

5

6

7

8

9

10

2

2

2

2

3

3

3

4

image3.emf
CB 1CB 2CB 3

TB + CRC

Code Segmentation

CB 1

RP

2

CB 2

RP

3

CB L

CB L

RP

1

Repeat Padding

Encoding

CB 1

RP

2

ParityCB 2

RP

3

ParityCB 2

RP

1

Parity

oleObject2.bin
CB 1

CB 2

CB 3

TB + CRC

Code Segmentation

CB 1

CB 1

RP2

RP 2

CB 2

RP3

CB L

CB L

RP 1

Repeat Padding

Encoding

Parity

CB 2

RP 3

Parity

CB 2

RP 1

Parity

image4.emf
CB 1

RP

2

ParityCB 2

RP

3

ParityCB L

RP

1

Parity

CB 1

RP

2

Decode

successful

Replace CB2

repeated part

with known bits

oleObject3.bin
Decode successful

CB 1

RP 2

Replace CB2 repeated part with known bits

CB 1

RP 2

Parity

CB 2

RP 3

Parity

CB L

RP 1

Parity

image5.emf
CB 1

RP

2

ParityCB 2

RP

3

ParityCB L

RP

1

Parity

CB 1

RP

2

Decode

unsuccessful

Replace CB3

repeated part

with known bits

Decode

successful

CB 2

RP

3

CB L

RP

1

Decode

successful

RP1 part is then

used improve the

decoding of CB1

oleObject4.bin
Decode unsuccessful

CB 1

RP 2

Replace CB3 repeated part with known bits

CB 2

RP 3

Decode successful

CB L

RP 1

Decode successful

RP1 part is then used improve the decoding of CB1

CB 1

RP 2

Parity

CB 2

RP 3

Parity

CB L

RP 1

Parity

image6.png

