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Introduction
In the RAN1-88 February 2017 meeting [1], the following was concluded:
Conclusion for some code design targets:
· At least support 20Gbps decoder information throughput with code rate 8/9
· Also aim for good throughput performance at lower code rate(s)
· FFS the details of how to assess throughput performance at lower code rates, including whether the assessment is relative or absolute, and other constraints (e.g. complexity)

This contribution discusses the throughput of LDPC decoders with codes of different maximum lift sizes. More specifically, the effect of decoding a different number of base-graph edges (blocks) simultaneously is investigated and methods to resolve scheduling conflicts are discussed.
The decoder implementation complexity is compared for codes with different maximum lift sizes, where the tradeoff between a larger maximum lift size and a larger number of edge processors is presented.
Layered Decoding
Operations in an LDPC decoder can proceed according to a flooding schedule, where all check nodes are process simultaneously and use messages from the previous iteration to calculate their outputs. Another schedule is the layered schedule, in which check nodes are processed serially and messages from previously processed check nodes are used to calculate output messages within the same iteration. The layered schedule requires fewer iterations than the flooding schedule and leads to lower implementation complexity.
High throughput layered LDPC decoders can be either node-parallel (row-parallel) or edge-parallel (block-parallel). A node parallel processes all edges in a base-graph check node simultaneously, whereas an edge-parallel decoder processes one base-graph edge at a time. In [2], an intermediate architecture that processes multiple edges simultaneously was proposed. This architecture was also studied in [3] for different NR-LDPC proposals where it was shown that it can reach a throughput of 20 Gbps. To process  base-graph edges in parallel, a decoder implements  edge processors each comprising a cyclic shifter of size  and a group of  node processors to calculate the messages associated with this edge as shown in Figure 1.


[bookmark: _Ref478140793]Figure 1 Decoder architectures: (a) single-edge, (b) multiple-edge, and (c) node-parallel
Due to pipelining, edge-parallel and node-parallel layered decoders can arrive at edge whose updated value is still being processed and is not available yet. This is denoted a conflict in [3]. The next section shows methods for reducing the impact of such scheduling conflicts.
Addressing Scheduling Conflicts
When the decoder reaches an edge that causes a scheduling conflict, it can stall and wait for the new value to become available, or it can use the old value of the message from the previous iteration. The first option increases latency as shown [3]. Using the old message value affects performance. However, it was shown in [4] that the impact on performance is negligible (< 0.05) for rates ½ and 1/3. At higher rates, performance can be recovered by increasing the iteration count by a small amount, which would have a smaller impact on decoding latency than stalling at every conflict.
How the edge processors are assigned to rows (nodes) in graph also affects the number of conflicts. In [3], each edge processor operates on a different row in the base graph. Alternatively, the edge processor can operate on edges belonging to the same row in the graph and move to another row when all the previous row’s edges are in the pipeline. This limits conflicts to row transitions only, reducing their number. The processing order of edges within a row can also be modified.
If the choice is made for the decoder to process edges from different rows within a layer, non-consecutive rows can be assigned to a layer to reduce conflicts. For example, the base matrix for the K = 8192, R = 1/3 code with Kb = 26 described in [5], contains 54 rows. Using the conflict-free definition of quasi-row orthogonality from [3], these rows can be arranged into 18 layers containing 3 rows each, or into 14 layers containing 4 or fewer rows each. This organization is shown in the appendix. It should be noted that the codes described in [5] do not have an explicit orthogonality requirement, since such a requirement could degrade the performance of the codes [6].
Observation 1: There are many methods for reducing the amount and effect of scheduling conflicts in multiple-edge decoders.
Effect of Maximum Lift Size on Implementation Complexity
The complexity of the circular shifters used in edge processors scales super-linearly with the maximum lift size. The QC-LDPC shift network (QSN) is an example of flexible circular shifter that support shifts of any amount and size [7]. In the following, we will use the number of  q-bit multiplexers as a measure of switch complexity, where q is the number of bits in a decoder message, to show the effect of maximum lift size.
A QSN for a maximum lift size  was shown in [7] to require  multiplexers. Therefore the circular shifter has a complexity that scales as . For example, tripling the maximum lift size is expected to increase the switch complexity at least 3.6 times. This complexity scaling is illustrated in [7] where increasing the maximum lift size from 32 to 96 increased the area 3.7 times. Therefore, the three switches for processing three edges (columns) from a base graph with a lift size , are less complex than the switch for processing a single edge from a base graph with a lift size ; while having the same decoder parallelism and similar throughput.
The number of computational elements incorporated into the node processors is related to the decoder parallelism. Two decoders can have the same amount of parallelism even if they are implemented for codes with different maximum lift sizes by implementing a different number of edge processors. The target throughput will determine the level of parallelism in the decoder, not the maximum lift size.
Observation 2: Decoders with the same parallelism level will have comparable implementation complexity even if they target codes with different maximum lift sizes.
Conclusions
Observation 1: There are many methods for reducing the amount and effect of scheduling conflicts in multiple-edge decoders.
Observation 2: Decoders with the same parallelism level will have comparable implementation complexity even if they target codes with different maximum lift sizes.
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Appendix

Table 1 Rows of the (24576, 8192) code arranged into layers with quasi-orthogonal rows
	Layer Index
	Rows in layers of size = 3
	Rows in layers of size 

	0
	 6,9,10
	 6,9,10,11

	1
	 7,11,12
	 7,12,13,14

	2
	 8,13,14
	 8,15,16,17

	3
	 15,16,17
	 18,19,20,21

	4
	 18,19,20
	 22,23,24,25

	5
	 21,22,23
	 26,27,28,29

	6
	 24,25,26
	 30,31,32,33

	7
	 27,28,29
	 34,35,36,37

	8
	 30,31,32
	 38,39,40,41

	9
	 33,34,35
	 42,43,44,45

	10
	 36,37,38
	 46,47,48,49

	11
	 39,40,41
	 50,51,52,53

	12
	 42,43,44
	 0,1,2,3

	13
	 45,46,47
	 4,5

	14
	 48,49,50
	 

	15
	 51,52,53
	

	16
	 0,1,2
	

	17
	 3,4,5
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