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Introduction
In the RAN1-88 February 2017 meeting [1], it was agreed to consider two LDPC families in design of NR LDPC.
Agreement: 
· Number of base graphs for eMBB is FFS between 1 and 2
· Evaluate the potential gains from 2 base-graphs compared to a single base-graph until RAN1#88bis

In this contribution, we focus on the hardware efficiency benefits which are shown to be significant compared to a single family solution. As such, two-family LDPC codes can then provide reduced memory complexity, improved throughput, reduced decoding latency, as well as better energy efficiency compared to single LDPC code families. Moreover, such benefits can be independent of decoding architectures.
Multiple family LDPC
We review some key aspects of multi-family LDPC codes which were first introduced in [2] and updated in [3].
[bookmark: _Ref471674129]Nested base graph structure
We define a family as a base graph which contains a collection of nested base graphs. Such a base graph consists of a high-rate core graph (i.e., highest rate supported before puncturing) and a low rate extension. The high-rate core includes two relatively high-degree punctured variable nodes that are base information nodes, and a set of degree three base information nodes that completes the set of information variable nodes. The parity structure is generally similar to the 802.11n encoding structure with the addition of one degree one-parity bit which is a parity of the two punctured variable nodes. The remainder of the base graph beyond the core graph consists of low-rate extension bits which are formed by taking parities of the systematic and parity-bits of the core graph. These can be used to generate re-transmissions that support rate-compatible IR HARQ. The entire structure has been optimized (offline) for connections to provide good performance at low complexity across all of the nested subgraphs. Figure 1 depicts a nested base graph family. Various details such as number of systematic information bit-columns and parities are different for the different families and are explained below.
For each family, we define quantities  and  as the minimum and the maximum number of base information bit-columns in the nested set of base graphs and  and  as the minimum and maximum number of parity bit-columns, and  as the number of base parity checks in the core (also the number of base parity bits in the core). The number of punctured base information bit-columns is denoted by  and is set to two. Multiple base graphs are nested within each other starting at the smallest basegraph over  base information columns and ending with the largest basegraph with  base information columns. For different operating rates supported by the family, different starting base graphs can be selected from the nested collection and used for encoding and decoding.  The importance of this structure has been presented previously in [2], and more detailed discussion is provided in [13] on how this structure achieves fine granularity with coarse liftings. Here we only provide the main numerology needed for analysis of the hardware performance and utilization benefits for multiple families versus single families.
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[bookmark: _Ref474082764]Figure 1: Family of nested base graphs













The base graphs derived from a given family are then lifted to achieve a binary parity check matrix. Rather than supporting a continuum of liftings, each family also consists of a set of clustered liftings, which are defined as follows. Consider the set of numbers  and the set of lifts given by  for . For each  the set of lifts  is referred to as the cluster of lifts.  The full set of lifts is given by the set {4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 384, 448, 512, 640, 768, 896}. However, the lift size is restricted to a maximum of 256, 320, or 512. 
[bookmark: _Ref474078566]Multiple family descriptions
To meet all the NR requirements, two families or two nested base graphs are proposed in [3]. The two families are denoted as the high and the low family, which indicates the relative code rate of the core portion of the graph. Since it was agreed in RAN1-88b [1] that the maximum lift size () is one of 256, 320, or 512, three potential high families are discussed in this contribution: the High-512 and High-320 have  and , respectively and are described in detail in [3]; and an example High-256 family with  that is designed in a manner similar to the aforementioned two. The low family is limited to  and is described in [3].
It should be noted that is not a proposal for a four family solution. Only one of the high families will be used in conjunction with the low family as a two-family solution. This contribution discusses multiple high families to illustrate that the benefits of a two-family solution apply to any choice of the high family.
Some key parameters related to these families are listed in the tables below. The low family listed in all tables is the same family, and repeated for a complete description of each solution. The maximum information block length () value listed for the low family in each table corresponds to restricting its maximum lift size to that of the associated high family. If lift decomposition is used [15],  for the low family can be 8192 bits.

Table 1 Two family solution for Zmax = 512
	Family
	
	
	
	
	
	
	
	
	
	

	High-512
	20
	16
	2
	6
	102
	4
	16/18
	20/120
	64
	8192

	Low
	10
	8
	2
	7
	114
	10
	8/16
	10/122
	32
	5120



Table 2 Two family solution for Zmax = 320
	Family
	
	
	
	
	
	
	
	
	
	

	High-320
	30
	24
	2
	7
	158
	5
	24/27
	30/186
	96
	8192

	Low
	10
	8
	2
	7
	114
	10
	8/16
	10/122
	32
	3200



Table 3 Two family solution for Zmax = 256 with an example High-256 family
	Family
	
	
	
	
	
	
	
	
	
	

	High-256
	32
	25[footnoteRef:2] [2:  Kb = 25 is preliminary and further optimization is still underway.] 

	2
	9
	160
	7
	8/9
	1/6
	100
	8192

	Low
	10
	8
	2
	7
	114
	10
	8/16
	10/122
	32
	2560



From the tables, it can be observed that due to its small base graph, the low family can support smaller block lengths compared to the high families.
Observation 1: Using a second family provides better support for short block lengths and lower code rates.
[bookmark: _Ref474004302]High throughput implementations
For a given LDPC family, the largest block length is achieved using that family’s largest supported lift size . The largest information block length is also where the maximum throughput is reached for each code rate. Therefore, codes with the maximum lift size are used to achieve peak throughput.
There are multiple high-throughput LDPC decoder implementation architectures. The two main ones discussed in NR are the edge-parallel (also called block-parallel) architecture and the node-parallel (also called row-parallel) architecture [8][9][10][11][12]. The major difference between the two architecture classes is in the number of base-graph edges (blocks) processed in parallel. A node-parallel decoder processes all edges belonging to the same base-graph check node (row) in parallel. Whereas an edge-parallel decoder processes a smaller subset, as small as one, of base-graph edges simultaneously.  Figure 2 illustrates the difference between the architectures and shows a single-edge architecture, a multiple-edge architecture with four parallel edges, and a node-parallel architecture.
To process  base-graph edges in parallel, a decoder implements  edge processors each comprising a cyclic shifter of size  and a group of  node processors to calculate the messages associated with this edge. In a node-parallel decoder,  is equal to the maximum check-node degree . Using a parallelism level  that is less than  reduces the computational logic complexity within each edge processor, but also reduces the maximum achievable throughput. Therefore, the peak throughput determines the level of parallelism. As was discussed in [8], the cyclic-shift network implication complexity increases super-linearly according to , therefore it is important to choose a  value that provides a balance between decoder throughput and implementation complexity.
Observation 2: Peak throughput determines the computational resource parallelism and complexity of both edge- and row- parallel decoder architectures.




[bookmark: _Ref474066463]Figure 2 Decoder architectures: (a) single-edge, (b) 4-edge, and (c) node-parallel
The latency of an edge-parallel decoder was calculated in [8] as cycles per codeblock, where  is the codeblock length,  the average variable node degree,  the lift size,  the number of edges processed in parallel, and  the number of decoding iterations. If the decoder parallelism is constrained to , the latency is approximately cycles per codeword. Given this latency, the information throughput is  bit/cycle. It can be observed from this expression that the throughput of an edge-parallel decoder is proportional to the lift size up to the parallelism constraint .
In [11], the latency of a node-parallel decoder is given as , where  is the number of layers, and  is the number of clock cycles required to process a layer. While a layer in [11] can contain multiple base-graph check nodes (rows), doing so significantly increases the decoder implementation complexity and is unnecessary to achieve peak throughput. Therefore, in this analysis, each layer contains a single base-graph check node (row). The number of base-graph nodes is equal to the number of rows in the base matrix which can be calculated from the information block length and code rate approximately as . Since a decoding layer is assumed to contain one base-graph node, the number of layers in the latency calculation becomes  and the latency  cycles per codeblock. Similar to the edge-parallel decoder, when a parallelism constraint  is used, the latency is approximately  cycles per codeblock. The information throughput of a node-parallel decoder is   bit/cycle, which is proportional to the lift size  to the parallelism constraint .
Observation 3: The throughput of both edge-parallel and node-parallel LDPC decoders is proportional to the lift size up to the parallelism-level constraint.
Since the throughput of both edge-parallel and node-parallel decoders is proportional to the lift size, the throughput analysis continues using an edge-parallel decoder with a single edge processor without loss of generality.
As the block length decreases, the lift size of the codes in a family decreases and as a result so the throughput decrease as well. Figure 3 shows the normalized throughput per iteration for codes from the High-320 family at different rates as the information block length changes with a parallelism constraint . The case of  is analysed in the next section. The throughput varies slightly when the lift size is constant but the block length changes. The major changes in throughput occur when the lift changes. For the code of rate 1/3, the ratio of the throughput at  and  is  since the average variable does not vary significantly with block length. For the High-512 and High-256 families, this ratio is also high at 512/8 = 64 and 256/4 = 64, respectively.
Observation 4: Decoding small blocks will be significantly slower than decoding large blocks when using a single code family.
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[bookmark: _Ref474074114]Figure 3 Decoding throughput per iteration for codes of different rates and block lengths from a single family
As discussed earlier, each edge processor is provisioned for a lift size of . As the block length and lift size  decrease, the number of active node processors in an edge processor decreases. The utilization ratio is . For the high family, is only used for block lengths . If we look at  and  [1], the computational hardware will be fully utilized for only 6.3% of the block lengths. This leads to a large amount of underutilized dark hardware. This underutilization applies to all single-family solutions. For example, to reach , the code in [11] will have a lift size of 4 where as the hardware will be provisioned for 
Observation 5: A single-family solution leads to underutilization of decoding hardware resources as the block length decreases for both edge-parallel and block-parallel decoders, as compared with a multiple family solution as given in [2].
[bookmark: _Ref474150675]Improved Hardware Efficiency
In this section, the use of multiple code families is proposed a solution to the throughput and hardware underutilization issues of single family proposals.
The family parameter tables in Section 2.2 show that the families has smaller base graphs than the high-320 and high-512 families (ahigh-256 family would have an even larger base graph). Therefore, at the same information block length , codes from the low family have larger lift sizes compared to codes from the high family. Therefore using the same decoder hardware, codes from the low family will have higher throughput than codes from the high family at the same information block length and code rate.
Observation 6: Subject to an implementation complexity constraint, codes from families with larger lift sizes will have higher decoding throughput than codes from families with smaller lift sizes at the same information block length and code rate.
Since the high family is the only family that supports high code rates, it is used to achieve the peak throughput and the decoder hardware only need to be provisioned to efficiently support its maximum lift size of , i.e. only   node processors per edge processor need to be implemented. To generalize, each edge processor in the decoder will have an parallelism level of , where  is the lift size used in the peak-throughput case.
Given a parallelism constraint , the throughput of the proposed two-family solutions is analysed. Only codes with a lift size  are chosen from the low family. All codes from the high family have  in this information block range. As in Section 3, a single-edge decoder is used in the analysis, but the conclusions also apply to multiple-edge and node-parallel decoders.
Figure 4 shows the normalized decoding throughput of the two family solution subject to . It can be observed that low family is 3.5—6 times as fast as the High-256 family at the same information block length and code rate.
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[bookmark: _Ref478122900]Figure 4 Normalized decoding speed for codes from the two-family solution with 
The 3.5—5 decoding throughput gains for the low family compared to the High-320 subject to P are shown in Figure 5. By setting the parallelism level to 320 in this case, the low family can be used for  when the code rate is  to significantly increase decoding throughput over a single family solution.
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[bookmark: _Ref474001900]Figure 5 Normalized decoding speed for codes from the two-family solution with 
Similarly, the low family provides speed gains when used in conjunction with the High-512 family in a two family solution with a decoder parallelism level  as shown in Figure 6. In this solution, the low family is 2—2.5 times as fast as the High-512 family.
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[bookmark: _Ref477970413]Figure 6 Normalized decoding speed for codes from the two-family solution with 

Since the high family has the larger base graphs of the two families, the routing network between the memory and edge processors in the multiple-edge and the node-parallel will accommodate the low family without an increase in its complexity. Some of the control logic will need to be modified when more than one family is supported and the code description memory will increase in size. However, these changes will not have a significant impact on decoder area.
Observation 7: A two-family solution yields significant throughput increases compared to a single-family solution without increasing the implementation complexity of the decoder.
An LDPC decoder that utilizes codes from the middle and low families as the block length decrease will better utilize the hardware available and reduce the amount of dark hardware. For low code rates where the low and the High-320 families are supported, the hardware will be fully utilized (codes with ) for . This corresponds to full hardware utilization for 14% of the EMBB information block length range, compared to 6.3% in the single family case. 
For very short block lengths, codes from the low family use a lift size of 12, which leads to three times the hardware utilization of codes from the High-320 family with lifts of size 4. These improvements in utilization and reduction in dark hardware apply to edge-parallel as well as node-parallel decoders.
Similarly, a two-family solution utilizing the High-512 and low families, allows full hardware utilization for 12% of the EMBB information block length range, compared to less than 1% when only the  High-512 family is used.
The throughput and efficiency gains apply to other multiple family solutions with different maximum base-graph sizes such as [4] and [5]. For example, in [4], the family which covers all code rates and the majority of information block lengths has lift sizes . Whereas the second family can use a lift size  with hardware utilization that is  times as much as the first family.
Observation 8: A two-family solution improves hardware utilization and efficiency compared to a single-family solution in both edge-parallel and node-parallel decoders.
All of the proposed code families were shown to have good waterfall performance and robust, low error-floor [7]. Therefore the throughput, latency, and efficiency gains of using multiple code families do not comprise performance.
Improved Memory Utilization
It was agreed in RAN1-87a [14] that the minimum code rate supported at the maximum block size is 1/3. Lower code rates are not precluded as long as the codeblock length is less than . In this section, the impact of the lift size of low rate codes on memory size and geometry is analysed for an edge-parallel design and then for a node-parallel design.
For a code of rate , information block length , and lift size , there are  channel LLRs. In an edge parallel decoder, these LLRs are arranged in memory as words of  LLRs each[footnoteRef:3]. The depth of this memory is the maximum number of base graph columns given a minimum supported rate. For , the maximum number of base-graph columns, denoted , is  98, 92, and 62 for the High-256, High-320, and High-512 families, respectively. These memory depth values correspond to the largest amount of memory that could be utilized by the decoder since for ,  will be . [3:  This memory is composed of multiple, narrower banks of memory] 

As the rate decreases below 1/3, the number of columns in the base graph increases, further increasing the memory depth, but without increasing the useful amount of available memory because the number of channel LLRs cannot exceed . This increase can be substantial as shown in Table 4. The memory be either made deeper, physically increasing its size and wasting memory, or via additional routing circuitry to mimic a deeper memory, increasing decoding complexity and critical path length.
Using the low family for code rates < 1/3 resolves this issue: the low family has uses larger lift sizes and has smaller base graphs than high families at the same block length, reducing the required memory depth. Table 4 shows the number of base-graph columns for the four families for rates 1/5 and 1/6 subject to the constraint . It can be observed that the memory depth required for the low family to support these code rates is less than that required by the high families and does not exceed the depth required by any high family for the   case.

[bookmark: _Ref477978915]Table 4 Memory depth at low rates for the high families compared to the low family
	Rate
	K
	High-256
	High-320
	High-512
	Low

	
	
	Z
	
	Z
	
	Z
	
	Z
	

	1/5
	4912
	160
	156
	192
	131
	256
	99
	512
	51

	1/6
	4096
	160
	156
	160
	156
	256
	98
	512
	51



The complexity of node-parallel decoder designs is directly tied to the size of the base graph as shown in [10]. Limiting the number of columns in the base graph at low code rates by means of a second LDPC family with a smaller base graph, reduces the complexity of node-parallel decoders as well.
Observation 9: A two-family solution leads to more efficient memory utilization than a single-family solution at low code rates.

Given the throughput and efficiency gains and the robust performance of the two family solution, we propose the following:
Proposal 1: Two LDPC code families should be supported in NR.
Conclusions
Observation 1: Using a second family provides better support for short block lengths and lower code rates.
Observation 2: Peak throughput determines the computational resource parallelism and complexity of both edge- and row- parallel decoder architectures.
Observation 3: The throughput of both edge-parallel and node-parallel LDPC decoders is proportional to the lift size up to the parallelism-level constraint.
Observation 4: A multi-code family solution yields significant throughput increases compared to a single-family solution without increasing computational logic complexity in the decoder.
Observation 5: A single-family solution leads to underutilization of decoding hardware resources as the block length decreases for both edge-parallel and block-parallel decoders, as compared with a multiple family solution as given in [2].
Observation 6: Subject to an implementation complexity constraint, codes from families with larger lift sizes will have higher decoding throughput than codes from families with smaller lift sizes at the same information block length and code rate.
Observation 7: A two-family solution yields significant throughput increases compared to a single-family solution without increasing the implementation complexity of the decoder.
Observation 8: A two-family solution improves hardware utilization and efficiency compared to a single-family solution in both edge-parallel and node-parallel decoders.
Observation 9: A two-family solution leads to more efficient memory utilization than a single-family solution at low code rates.
Given the throughput and efficiency gains and the robust performance of the three family solution, we propose the following:
Proposal 1: Two LDPC code families should be supported in NR.
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