[bookmark: _GoBack]3GPP TSG RAN WG1 Meeting #88bis 				R1-1704932
Spokane, USA, 3rd - 7th April 2017
Agenda Item:	8.1.4.2.1.3
Source: 	LG Electronics
Title: 	Design of Polar code for control channel
[bookmark: Source][bookmark: Title][bookmark: DocumentFor]Document for:	Discussion and decision
1. Introduction
In RAN1NR-AH and RAN1#88, following agreement were made [1][2]:
	Agreement [1]:
· In NR Polar Code discussion, polar codes will be described without bit reversal in the encoder, i.e.:
[image:]
[image:]
Agreement for DCI [2]:
· Maximum mother code size of Polar code, N=2n, is:
· Nmax,DCI =512 for downlink control information

1.1. Information bit mapping and puncturing
1.1.1. Nested structure
Input data may not be transmitted due to puncturing. For example, in figure 1, when Y1 is punctured, U1 is not included in the transmitted coded bit. If U1 is information, the information bit should be replaced by a known bit (freezing). Puncturing pattern can be represented by the row weight of the transform matrix G in descending order, and the order of puncturing and freezing bit for figure 1 is {7, 6, 5, 3, 4, 2, 1, 0}. If the row weight of the transform matrix G is used as a puncturing pattern in descending order, the number of input bit connected to the each punctured bit is always '1'. Figure 2 and 3 illustrate weight and its corresponding row-index for matrix G for N = 8, 32, respectively.
[image:]
Figure 1. Encoding module of Polar code
[image:]
Figure 2. Row-index of transform matrix G (N=8)
The weight order is a nested structure (yellow region) in figure 3, which can be constructed by collecting entries within the largest mother code size.
[image:]
Figure 3. Row-index of transform matrix G (N=32)
Observation 1: The descending order considering the row weight of the transform matrix G is a nested structure.

1.1.2. Memory read address
Puncturing and freezing patterns can be stored in a single memory, and read addresses from memory can use Pascal's Triangle. In this case, the number of indexes having weight w for mother code sizes N is as follows:

 						(1)

Where, .
The starting read address from the stored memory by the maximum length (Pmax) of the puncturing pattern is as follows:

+-1			 	(2)

Where, denotes start address of each weight. After that, address is decremented from (2).
For example, the puncturing pattern (Pmax=Nmax=32) in figure 3 and the memory read address (2) are used to create a puncturing pattern of N = 8. The starting read address is (3).

				(3)
Each starting read address when the weight is 4, 2, and 1 is shown in (4) to (6).

				(4)

					(5)

						(6)
Figure 4 shows some memory addresses for N = 32 as red values.
[image:]
Figure 4. Memory address table for N=32

Observation 2: The memory read address of puncturing and freezing pattern can be easily constructed by using Pascal's Triangle from the transform matrix G.

1.1.3. Re-information/frozen bit mapping
To prevent all information bits from being punctured, the information bit location can be reassigned in the order of higher reliability within the frozen bit set. Figure 4 shows an example of reassigning the data on freezing position to the frozen bit position when the puncturing and freezing index is {7, 6}.
[image:]
Figure 4. Illustration of puncturing and information bit allocation

Proposal 1: Puncturing and freezing pattern can be derived from the row weight of the transform matrix G.

2. Conclusion
In this contribution, we considered the nested structure and memory read address from the transform matrix G. Based on the above discussion, we have the following observations and proposals.
Observation 1: The descending order considering the row weight of the transform matrix G is a nested structure.
Observation 2: The memory read address of puncturing and freezing pattern can be easily constructed by using Pascal's Triangle from the transform matrix G.
Proposal 1: Puncturing and freezing pattern can be derived from the row weight of the transform matrix G.

3. Reference
RAN1 chairman’s notes in RAN1 NR-AH, January, 2017
RAN1 chairman’s notes in RAN1 #88, February, 2017
image3.png

image4.emf
1248

0137

25

46

weight

index

image5.emf
12481632

01371531

251123

461327

891429

16101930

1221

1722

1825

2026

2428

weight

index

image6.wmf
)

(

log

)

(

log

w

N

2

2

C

oleObject1.bin

image7.wmf
÷

÷

ø

ö

ç

ç

è

æ

=

b

a

C

b

a

oleObject2.bin

image8.wmf
å

-

=

1

w

2

2

0

i

i

P

C

)

(

log

max

)

(

log

oleObject3.bin

oleObject4.bin

image9.wmf
)

(

log

)

(

log

max

w

P

2

2

C

oleObject5.bin

image10.wmf
16

1

1

10

5

1

1

C

C

3

3

0

i

i

5

2

=

-

+

+

+

=

-

+

å

=

oleObject6.bin

image11.wmf
8

1

3

5

1

1

C

C

2

3

0

i

i

5

1

=

-

+

+

=

-

+

å

=

oleObject7.bin

image12.wmf
3

1

3

1

1

C

C

1

3

0

0

i

i

5

=

-

+

=

-

+

å

=

oleObject8.bin

image13.wmf
0

1

1

1

C

0

3

=

-

=

-

oleObject9.bin

image14.png

image15.png

image1.png

image2.png

