3GPP TSG RAN WG1 Meeting #88bis 	 R1-1704251
Spokane, USA, 3rd - 7th April 2017

Agenda Item:	8.1.4.1.2
Source:	Huawei, HiSilicon
Title:	Implementation aspects of LDPC codes
Document for:	Discussion and Decision

[bookmark: _Ref124589665][bookmark: _Ref71620620][bookmark: _Ref124671424]Introduction
In RAN1 #88 meeting [6] it was agreed that:
Conclusion for some code design targets:
· At least support 20Gbps decoder information throughput with code rate 8/9
· Also aim for good throughput performance at lower code rate(s)
· FFS the details of how to assess throughput performance at lower code rates, including whether the assessment is relative or absolute, and other constraints (e.g. complexity)
In this contribution we consider the nested LDPC codes in [4] and illustrate latency and hardware complexity trade-off using one and multiple cores for decoding.
Latency and complexity analysis
In this section we compare different solutions in terms of latency and implementation complexity. LDPC decoder architectures can be row-parallel or block-parallel ones. As shown in [3], the row parallel architecture for a large parity check matrix (PCM) is not practical because of the complex routing network needed for parallel processing of several PCM rows. In the analysis below we consider the block-parallel decoder architecture with layered schedule similar to the architecture analysed in [1][2][3]. This architecture is suitable for both the Layered Offset Min-Sum and the Adjusted Min-Sum decoding algorithms. Block parallel architecture is obtained by partitioning the processing of a layer into multiple cycles. A layer may consist of one circulant row or, if a matrix has quasi row orthogonal (QRO) structure, a layer may include several non-overlapping groups of rows. For a block paralleled decoder, the following equations can be used to calculate the latency and the throughput:
 (1)
 (2)
where
· denotes the number of decoding iterations ();
· denotes the number of clock cycles required to do one decoding iteration;
· denotes the number of information bits ();
· denotes the operating frequency (GHz).
The parameter can be different for different implementations of the block-parallel decoder. In an ideal situation when all the computation resources are utilized 100% it can be calculated as follows:
 (3)
(see formula (2) from [3]), where
· denotes the parallelism level which may be smaller or bigger than the PCM circulant size ;
· denotes the codeword length (including the punctured nodes);
· denotes the average variable node degree (including the punctured and weight 1 nodes).
In practical decoder implementations for irregular LDPC codes it is not usually possible to achieve this ideal number of clock cycles per one iteration . Thus it makes sense to estimate the real value of .
If the parallelism level is greater than the circulant size , (for example, where is some positive integer), the decoder may process several circulants in parallel. We suppose that this is done in the decoder by several () different check-node update (CNU) units, called cores (for example, is used in [2]), and each such core can process one circulant block in the PCM per one clock cycle. Usually a pipeline scheme is utilized and the results of the circulant block processing (the sum of the corresponding channel LLR and the check-to-variable messages) are updated with clock cycles delay (for example,). We call such decoding architecture a C-core block parallel decoder with pipeline delay.
Another way for increasing the parallelism level is using several decoders running in parallel, but this proportionally increases the memory size.
Increasing the number of cores C monotonically increases the throughput and proportionally decreases the latency. Thus the larger the maximal circulant size of the matrix is, the smaller is the number of cores needed to achieve the required throughput. At the same time, the smaller the number of cores is, usually the better the core utilization (percentage of time when the core is not in the pause state) can be achieved.
[image:]
Figure 1. Example of a conflict
For a multi-core decoder, the circulant rows of the PCM are processed by a certain order during the decoding iteration, and several cores process different circulant rows simultaneously to increase the throughput. In such multi-core case () when the input data (the sum of channel LLR and the check-to-variable messages) for one core (core A) is not ready because another core (core B) has not yet finished on the previous circulant row, a conflict (see [7]) occurs.
A conflict can be resolved in two different ways.

First workaround: input old information
In the first workaround, core A can use information from the previous iteration as its input. If conflicts are resolved in this way, formulas (3) and (1) with can still be used to estimate the latency. One of the ways to implement the first workaround is so called fast layered decoding algorithm described in [8]. This kind of decoder improves the throughput when the row layers in the PCM are not mutually orthogonal. However, as noted in [8], because the fast layered decoder uses old information rather than the updated information, it partially loses the benefit from layered decoding algorithm and converges slower than layered algorithm.
As an example, the fast and standard (see Section 2.1.2) layered decoding algorithms are applied on the LDPC codes from [11] and [12]. Layered offset MS (offset=0.5) with 15 iterations and Layered BP with 25 iterations were used for evaluation.
[image:]
[image:]
Figure 2. Performance loss of Fast layered decoders (LOMS and Layered BP).
It is observed that for LOMS algorithm, the loss is about 0.15 dB at K = 7000 and code rate 8/9. For layered BP with 25 iterations, the loss for this rate is around 0.1 dB.
Observation 1: Fast layered decoding suffers about 0.2 dB and 0.1 dB performance loss compared to standard layered offset MS and BP decoding algorithms, respectively.
In a standard block-parallel decoder architecture with layered schedule only one shift network module (such as QSN or Banyan network) is required per one CNU core (see [10]). This is possible because we can store the shifted LLRs for each circulant column as we perform a decoding iteration. For each new processed circulant we need to apply the additional shift (the difference between the shifts in the current circulant and in the previous circulant of the same circulant column) when we go to the next circulant row. However, for the fast layered decoder we can no longer use this simplification since the LLRs from the previous iteration are not ready yet when we start the processing of the new layer. Hence we need two shift modules per one core and it amounts to a considerable increase of hardware complexity since the shift network can occupy more than 30% of the combinatorial logic in the decoder (see Table 1[9]).
Observation 2: The fast layered decoding architecture from [8] cannot be considered as an alternative to the standard block-parallel layered decoder in order to increase the throughput for PCMs with non-orthogonal rows since this significantly increases the combinatorial logic in the decoder.

Second workaround: wait until a conflict is finished
Core A can wait (up to clock cycles) until core B finishes its work and the corresponding input data for core A is ready. In this case if some layer contains multiple conflicts with the previous layer, the same clock cycles are needed to be waited regardless of the number of cores. Thus, total number of clock cycles spent to resolve all conflicts is up to where denotes the number of layers that have at least one conflict with the previous layer (hereinafter we call them conflict layers).
For a -core () block parallel decoder and a PCM with conflicts, the following equation (4) as explained in [7] can be used to calculate a pessimistic (upper) estimate of the number of clock cycles per one iteration:
, (4)
where denotes the total number of conflict layers in the PCM.
It can be shown that by changing the order of processing circulants within a row some conflicts may be resolved. Nevertheless, some number of conflicts cannot be resolved by optimizing the decoding schedule.
The following formula (5) gives an optimistic (lower) estimate for the number of decoding clock cycles per iteration:
 (5)
where
· denotes the number of non-empty circulants in the -th row of the PCM in the processing order;
· denotes the total number of non-empty circulants in the PCM, ;
· denotes the number of conflicts in the -th row of the PCM with the previous row in the processing order (the first processed row in the current iteration we compare with the last processed row from the previous iteration).
Formula (5) can be explained as follows. First of all we suppose here that each layer consists only of one row. If a PCM has non-zero circulants then for one decoding iteration the sum of the numbers of clock cycles required for all cores should be at least . If there are some conflicts in the -th row with the previously processed row, then for all cores there will be in total at least stalls (lost clock cycles) when processing this row (if this value is positive). This is true because before we can start to process circulants that have conflicts with the previous row we have to wait clock cycles after we finish the previous row processing due to the pipeline delay. Hence, cores could process circulants during this time, but due to the conflicts they can process only out of these circulants that do not need information from the previous row. As a result, there will be at least stalls for one decoding iteration for all cores.
It can be shown via simulations that the performance degradation is negligible if all the conflicts occur only in the HW columns of the PCM. We indicate such a matrix as non-conflict code (NC). It is easily seen that in a matrix with NC-QRO structure all conflicts inside one layer can only occur in HW circulant columns. An example of NC-QRO matrix is shown in Figure 2 in [4]. A more comprehensive example of such NC matrix with QRO property can be found in the Excel spreadsheet in [4].
Let us illustrate formula (5) by an example shown in Figure 3. Suppose we have a 5x10 PCM with non-zero circulants (conflicts are shown in red, different colors indicate different rows of the PCM).

[image:]
[bookmark: _Ref477885123]Figure 3. Example of PCM
We also suppose that the pipeline delay and the number of cores . In the table below we give the values of , , and terms from formula (5) which gives us clock cycles per one decoding iteration.

Table 1.
	row
	
	
	

	1
	4
	2
		2

	2
	4
	1
	1

	3
	4
	2
	2

	4
	4
	2
	2

	5
	8
	2
	0

	Total
	24
	9
	7

Figure 4 shows an example of optimal processing schedule for a code shown in Figure 3 with a two core decoder where this low estimate is achieved. Stalls are shown as empty cells.

[image:]
[bookmark: _Ref477886729]Figure 4. Optimal processing schedule for a two-core block parallel decoder

[bookmark: _GoBack]In the tables below we provide latency estimates for the NC-QRO matrix [4], the matrix A (proposed in [11]) and the matrix B (proposed in [12]). For the ideal latency estimate we use formula (3) and thus do not take into account the conflicts and assume that each circulant block is processed one clock by one core (in pipeline). For the pessimistic (upper) estimate of the real latency we use formulas (1) and (4) and thus take into account all the conflicts that occur outside the HW circulant columns. For optimistic (lower) estimate of the real latency we use formulas (1) and (5) and thus take into account only irresolvable conflicts.

Table 2. Latency estimations (clock cycles for 15 iterations), NC-QRO code,
	Rate
	NC-QRO code (66x82,Zmax=512),

	
	Ideal latency estimate, clocks
	Upper latency estimate, clocks
	Lower latency estimate, clocks

	# cores
	1
	2
	3
	4
	1
	2
	3
	4
	1
	2
	3
	4

	8/9
	855
	435
	285
	225
	945
	525
	375
	315
	870
	480
	360
	285

	5/6
	1080
	540
	360
	270
	1215
	675
	495
	405
	1110
	630
	465
	390

	3/4
	1305
	660
	435
	330
	1440
	795
	570
	465
	1320
	735
	540
	435

	2/3
	1515
	765
	510
	390
	1650
	900
	645
	525
	1545
	840
	615
	495

	1/2
	2220
	1110
	750
	555
	2355
	1245
	885
	690
	2250
	1200
	840
	675

	2/5
	2790
	1395
	930
	705
	2925
	1530
	1065
	840
	2805
	1470
	1035
	810

	1/3
	3300
	1650
	1110
	825
	3435
	1785
	1245
	960
	3330
	1740
	1200
	945

	1/5
	5250
	2625
	1755
	1320
	5385
	2760
	1890
	1455
	5280
	2715
	1860
	1425

	Rate
	NC-QRO code (66x82,Zmax=512),

	
	Ideal latency estimate, clocks
	Upper latency estimate, clocks
	Lower latency estimate, clocks

	# cores
	1
	2
	3
	4
	1
	2
	3
	4
	1
	2
	3
	4

	8/9
	855
	435
	285
	225
	975
	555
	405
	345
	900
	510
	390
	315

	5/6
	1080
	540
	360
	270
	1260
	720
	540
	450
	1155
	675
	510
	435

	3/4
	1305
	660
	435
	330
	1485
	840
	615
	510
	1365
	780
	585
	480

	2/3
	1515
	765
	510
	390
	1695
	945
	690
	570
	1590
	885
	660
	540

	1/2
	2220
	1110
	750
	555
	2400
	1290
	930
	735
	2295
	1245
	885
	720

	2/5
	2790
	1395
	930
	705
	2970
	1575
	1110
	885
	2850
	1515
	1080
	855

	1/3
	3300
	1650
	1110
	825
	3480
	1830
	1290
	1005
	3375
	1785
	1245
	990

	1/5
	5250
	2625
	1755
	1320
	5430
	2805
	1935
	1500
	5325
	2760
	1905
	1470

Table 3. Latency estimations (clock cycles for 15 iterations) for code A,
	Rate
	Code A (158x188,Zmax=320),

	
	Ideal latency estimate, clocks
	Upper latency estimate, clocks
	Lower latency estimate, clocks

	#cores
	1
	2
	3
	4
	5
	6
	7
	8
	1
	2
	3
	4
	5
	6
	7
	8
	1
	2
	3
	4
	5
	6
	7
	8

	8/9
	1650
	825
	555
	420
	330
	285
	240
	210
	1875
	1050
	780
	645
	555
	510
	465
	435
	1650
	825
	555
	435
	390
	360
	345
	330

	5/6
	1785
	900
	600
	450
	360
	300
	255
	225
	2100
	1215
	915
	765
	675
	615
	570
	540
	1800
	930
	660
	525
	480
	450
	435
	420

	3/4
	2340
	1170
	780
	585
	480
	390
	345
	300
	2790
	1620
	1230
	1035
	930
	840
	795
	750
	2355
	1215
	870
	720
	660
	630
	600
	585

	2/3
	2895
	1455
	975
	735
	585
	495
	420
	375
	3435
	1995
	1515
	1275
	1125
	1035
	960
	915
	2910
	1500
	1080
	900
	825
	780
	750
	720

	1/2
	4290
	2145
	1440
	1080
	870
	720
	615
	540
	5100
	2955
	2250
	1890
	1680
	1530
	1425
	1350
	4305
	2220
	1650
	1395
	1275
	1200
	1140
	1095

	2/5
	5475
	2745
	1830
	1380
	1095
	915
	795
	690
	6420
	3690
	2775
	2325
	2040
	1860
	1740
	1635
	5490
	2835
	2100
	1770
	1605
	1485
	1410
	1350

	1/3
	6540
	3270
	2190
	1635
	1320
	1095
	945
	825
	7485
	4215
	3135
	2580
	2265
	2040
	1890
	1770
	6570
	3375
	2460
	2040
	1815
	1665
	1575
	1485

	1/5
	9795
	4905
	3270
	2460
	1965
	1635
	1410
	1230
	10740
	5850
	4215
	3405
	2910
	2580
	2355
	2175
	9810
	4995
	3540
	2850
	2460
	2205
	2025
	1890

	Rate
	Code A (158x188,Zmax=320),

	
	Ideal latency estimate, clocks
	Upper latency estimate, clocks
	Lower latency estimate, clocks

	#cores
	1
	2
	3
	4
	5
	6
	7
	8
	1
	2
	3
	4
	5
	6
	7
	8
	1
	2
	3
	4
	5
	6
	7
	8

	8/9
	1650
	825
	555
	420
	330
	285
	240
	210
	1950
	1125
	855
	720
	630
	585
	540
	510
	1650
	825
	570
	495
	465
	435
	420
	405

	5/6
	1785
	900
	600
	450
	360
	300
	255
	225
	2205
	1320
	1020
	870
	780
	720
	675
	645
	1815
	960
	705
	630
	585
	555
	540
	525

	3/4
	2340
	1170
	780
	585
	480
	390
	345
	300
	2940
	1770
	1380
	1185
	1080
	990
	945
	900
	2370
	1260
	960
	855
	810
	780
	750
	735

	2/3
	2895
	1455
	975
	735
	585
	495
	420
	375
	3615
	2175
	1695
	1455
	1305
	1215
	1140
	1095
	2940
	1560
	1200
	1065
	1005
	960
	930
	900

	1/2
	4290
	2145
	1440
	1080
	870
	720
	615
	540
	5370
	3225
	2520
	2160
	1950
	1800
	1695
	1620
	4320
	2370
	1860
	1650
	1545
	1470
	1410
	1365

	2/5
	5475
	2745
	1830
	1380
	1095
	915
	795
	690
	6735
	4005
	3090
	2640
	2355
	2175
	2055
	1950
	5520
	3030
	2355
	2070
	1920
	1800
	1725
	1665

	1/3
	6540
	3270
	2190
	1635
	1320
	1095
	945
	825
	7800
	4530
	3450
	2895
	2580
	2355
	2205
	2085
	6600
	3570
	2715
	2340
	2130
	1980
	1890
	1800

	1/5
	9795
	4905
	3270
	2460
	1965
	1635
	1410
	1230
	11055
	6165
	4530
	3720
	3225
	2895
	2670
	2490
	9840
	5190
	3795
	3150
	2775
	2520
	2340
	2205

Table 4. Latency estimations (clock cycles for 15 iterations) for code B,
	Rate
	Code B (130x162,Zmax=256),

	
	Ideal latency estimate, clocks
	Upper latency estimate, clocks
	Lower latency estimate, clocks

	#cores
	1
	2
	3
	4
	5
	6
	7
	8
	1
	2
	3
	4
	5
	6
	7
	8
	1
	2
	3
	4
	5
	6
	7
	8

	8/9
	1695
	855
	570
	435
	345
	285
	255
	225
	1965
	1125
	840
	705
	615
	555
	525
	495
	1695
	855
	570
	435
	405
	375
	360
	360

	5/6
	2070
	1035
	690
	525
	420
	345
	300
	270
	2385
	1350
	1005
	840
	735
	660
	615
	585
	2070
	1050
	720
	570
	525
	480
	465
	450

	3/4
	2565
	1290
	855
	645
	525
	435
	375
	330
	2925
	1650
	1215
	1005
	885
	795
	735
	690
	2565
	1305
	915
	720
	645
	600
	570
	540

	2/3
	3165
	1590
	1065
	795
	645
	540
	465
	405
	3660
	2085
	1560
	1290
	1140
	1035
	960
	900
	3165
	1605
	1140
	930
	840
	780
	750
	720

	1/2
	4680
	2340
	1560
	1170
	945
	780
	675
	585
	5355
	3015
	2235
	1845
	1620
	1455
	1350
	1260
	4680
	2385
	1710
	1410
	1260
	1155
	1095
	1035

	2/5
	5940
	2970
	1980
	1485
	1200
	990
	855
	750
	6660
	3690
	2700
	2205
	1920
	1710
	1575
	1470
	5940
	3030
	2160
	1755
	1545
	1410
	1305
	1230

	1/3
	7020
	3510
	2340
	1755
	1410
	1170
	1005
	885
	7785
	4275
	3105
	2520
	2175
	1935
	1770
	1650
	7020
	3585
	2550
	2055
	1800
	1620
	1500
	1410

	1/5
	10950
	5475
	3660
	2745
	2190
	1830
	1575
	1380
	11760
	6285
	4470
	3555
	3000
	2640
	2385
	2190
	10950
	5580
	3885
	3075
	2610
	2310
	2100
	1935

	Rate
	Code B (130x162,Zmax=256),

	
	Ideal latency estimate, clocks
	Upper latency estimate, clocks
	Lower latency estimate, clocks

	#cores
	1
	2
	3
	4
	5
	6
	7
	8
	1
	2
	3
	4
	5
	6
	7
	8
	1
	2
	3
	4
	5
	6
	7
	8

	8/9
	1695
	855
	570
	435
	345
	285
	255
	225
	2055
	1215
	930
	795
	705
	645
	615
	585
	1695
	855
	585
	525
	495
	465
	450
	450

	5/6
	2070
	1035
	690
	525
	420
	345
	300
	270
	2490
	1455
	1110
	945
	840
	765
	720
	690
	2070
	1065
	765
	675
	630
	585
	570
	555

	3/4
	2565
	1290
	855
	645
	525
	435
	375
	330
	3045
	1770
	1335
	1125
	1005
	915
	855
	810
	2565
	1335
	960
	840
	765
	720
	690
	660

	2/3
	3165
	1590
	1065
	795
	645
	540
	465
	405
	3825
	2250
	1725
	1455
	1305
	1200
	1125
	1065
	3165
	1665
	1245
	1095
	1005
	945
	915
	885

	1/2
	4680
	2340
	1560
	1170
	945
	780
	675
	585
	5580
	3240
	2460
	2070
	1845
	1680
	1575
	1485
	4680
	2490
	1875
	1620
	1485
	1380
	1320
	1260

	2/5
	5940
	2970
	1980
	1485
	1200
	990
	855
	750
	6900
	3930
	2940
	2445
	2160
	1950
	1815
	1710
	5940
	3150
	2340
	1980
	1785
	1650
	1545
	1470

	1/3
	7020
	3510
	2340
	1755
	1410
	1170
	1005
	885
	8040
	4530
	3360
	2775
	2430
	2190
	2025
	1905
	7035
	3735
	2745
	2310
	2055
	1875
	1755
	1665

	1/5
	10950
	5475
	3660
	2745
	2190
	1830
	1575
	1380
	12030
	6555
	4740
	3825
	3270
	2910
	2655
	2460
	10980
	5730
	4095
	3330
	2880
	2580
	2370
	2205

Note that, according to formula (2), to reach a throughput of 20 Gbps for the given PCM at clock frequency 1 GHz with 15 decoding iterations, a decoder must have a latency not greater than clock cycles.
From the tables 2-4 we can find that optimistic (lower) estimate of the real latency for NC-QRO code is much less than the one for codes A and B, taking into account larger parallelism and fewer conflicts. If , the NC-QRO code can have a latency not bigger than 409 clock cycles using 3 cores, while code A can reach this target only using 8 cores and code B cannot meet the requirement of such decoding latency even using more cores (even with 8 cores code B requires at least 450 clock cycles for 15 iterations, as it is shown in Table 4). To be mentioned, the performance is not impacted by the limitation of NC-QRO structure, as observed in [5].
Observation 3: NC-QRO structured LDPC code can reduce conflicts when using multiple cores and improve latency without performance degradation.
Observation 4: Compact NC-QRO base-matrix has benefits in terms of decoding latency.

Throughput for lower code rates
Peak rate is one of the most important KPI for NR eMBB scenario. To achieve the 20Gbps peak rate, the largest RB number and highest MCS level (typically the highest modulation order and code rate) should be used. From system aspect, for the lower MCS levels, the system throughput should be smoothly decreased. It is very likely NR eMBB will have similar spectral efficiency range as LTE at least for lower MCS, so here we refer to the current LTE 256QAM TBS table to analyze the peak throughput requirement at each MCS level. Refer to the spec of 36213-d20 ([13]), Table 7.1.7.2.1-1: Transport block size table (dimension 34 × 110) is shown as follows, the maximum throughput for each MCS level also are listed in the following table which is normalized to 20Gbps peak rate.

[bookmark: _Ref477888104]Table 5. TBS table of LTE and normalized throughput
	 ITBS
	110RB

	
	TBS
	Rate
	Code Block Number
	Throughput
(Mbps)
	Normalized Throughput
(Gbps)

	0
	3112
	0.1179
	1
	3.112
	0.636

	1
	4008
	0.1518
	1
	4.008
	0.819

	2
	4968
	0.1882
	1
	4.968
	1.015

	3
	6456
	0.2445
	2
	6.456
	1.319

	4
	7992
	0.3027
	2
	7.992
	1.633

	5
	9528
	0.3609
	2
	9.528
	1.947

	6
	11448
	0.4336
	2
	11.448
	2.339

	7
	13536
	0.5127
	3
	13.536
	2.765

	8
	15264
	0.5782
	3
	15.264
	3.118

	9
	17568
	0.6655
	3
	17.568
	3.589

	10
	19080
	0.3614
	4
	19.08
	3.898

	11
	22152
	0.4195
	4
	22.152
	4.526

	12
	25456
	0.4821
	5
	25.456
	5.201

	13
	28336
	0.5367
	5
	28.336
	5.789

	14
	31704
	0.6005
	6
	31.704
	6.477

	15
	34008
	0.6441
	6
	34.008
	6.948

	16
	35160
	0.4439
	6
	35.16
	7.183

	17
	39232
	0.4954
	7
	39.232
	8.015

	18
	43816
	0.5532
	8
	43.816
	8.952

	19
	46888
	0.592
	8
	46.888
	9.579

	20
	51024
	0.6442
	9
	51.024
	10.424

	21
	55056
	0.6952
	9
	55.056
	11.248

	22
	59256
	0.7482
	10
	59.256
	12.106

	23
	63776
	0.8053
	11
	63.776
	13.029

	24
	66592
	0.8408
	11
	66.592
	13.605

	25
	71112
	0.8979
	12
	71.112
	14.528

	26
	75376
	0.9517
	13
	75.376
	15.399

	26A
	71112
	0.8979
	12
	71.112
	14.528

	27
	73712
	0.698
	13
	73.721
	15.061

	28
	76208
	0.7217
	13
	76.208
	15.569

	29
	81176
	0.7687
	14
	81.176
	16.584

	30
	87936
	0.8327
	15
	87.936
	17.965

	31
	90816
	0.86
	15
	90.816
	18.554

	32
	93800
	0.8883
	16
	93.8
	19.163

	33
	97896
	0.927
	16
	97.896
	20.000

	33A
	97896
	0.927
	16
	97.896
	20.000

Proposal 1: The ratio of required throughput to peak throughput for code rates lower than 8/9 in NR should be the same as LTE, except for pi/2 BPSK modulation.
The normalized throughputs for all the code rates are plotted in Figure 5 as black curves. Note that some code rates are used for different MCS levels (e.g. MCS 15 & 20), the maximum throughput of these MCS levels are selected as the throughput requirement for that code rate.
According to Table 5 and Figure 5, the channel code should not only achieve 20Gbps at highest rate, but also meet the throughput requirement at different rates. As we know, LTE turbo codes always decode at rate 1/3 no matter what rate is transmitted. Thus all the code rates have the same throughput and can easily achieve throughput requirements at all MCS levels as long as the peak throughput is achieved. However, when it comes to LDPC, the throughput is greatly affected by the code rate. The decoding complexity of LDPC increases as the code rate decreases as shown in [13], which results in a degradation in throughput. Due to this property, LDPC code should ensure all code rates can satisfy the corresponding throughput requirements.
In Figure 5, throughput estimates for codes from [11], [12] and [4] are given. Horizontal axis corresponds to the coding rate and vertical axis shows the throughput estimates of the corresponding codes, which is based on lower estimates of the decoding latency (assuming pipeline delay and clock frequency). From Figure 5 one can see that throughput of codes A and B does not meet the system throughput requirements for rates lower than 8/9.
However, if parity check matrix has NC-QRO property, due to the partial orthogonality of the matrix and low number of conflicts there is no significant complexity increase when the matrix is extended to lower code rate. Thus, for number of cores NC-QRO LDPC can always meet the system throughput requirements, especially for code rates 1/2 – 5/6.
Observation 5: The throughput of matrix with Kb=16 and quasi-row-orthogonality can achieve system requirement for all code rates.
[image:]
[bookmark: _Ref477887857][bookmark: _Ref477887848]Figure 5. Throughput at different code rates
Conclusions
This contribution discusses latency and hardware complexity using single and multiple cores for decoding. It is shown that the NC-QRO LDPC code outperforms other codes in terms of latency and hardware complexity trade-off.
In summary:
Observation 1: Fast layered decoding suffers about 0.2 dB and 0.1 dB performance loss compared to standard layered offset MS and BP decoding algorithms, respectively.
Observation 2: The fast layered decoding architecture from [8] cannot be considered as an alternative to the standard block-parallel layered decoder in order to increase throughput for PCMs with non-orthogonal rows since this significantly increases the combinatorial logic in the decoder.
Observation 3: NC-QRO structured LDPC code can reduce conflicts when using multiple cores and improve latency without performance degradation.
Observation 4: Compact NC-QRO base-matrix has benefits in terms of decoding latency.
Observation 5: The throughput of matrix with Kb=16 and quasi-row-orthogonality can achieve system requirement for all code rates.
Proposal 1: The ratio of required throughput to peak throughput for code rates lower than 8/9 in NR should be the same as LTE, except for pi/2 BPSK modulation.

References
[bookmark: _Ref471726040]R1-1610472: “Evaluation of Adjusted-Min-Sum LDPC Decoder and Complexity Aspects of Permutation Networks”, Huawei, HiSilicon
[bookmark: _Ref471726042]R1-1610139: “Efficient Channel Coding Implementations for EMBB”, Qualcomm
[bookmark: _Ref471725833]R1-1700246, “Complexity, throughput and latency analysis on LDPC codes for eMBB”, ZTE, ZTE Microelectronics
[bookmark: _Ref471565323]R1-1704250, “LDPC design for eMBB data”, Huawei, HiSilicon
[bookmark: _Ref471747676]R1-1704252, “Performance evaluation of LDPC codes”, Huawei, HiSilicon
[bookmark: _Ref473632842][bookmark: _Ref473800546]Chairman’s Notes, RAN1#88bis
[bookmark: _Ref473717837]R1-1700093, “Implementation aspects of LDPC codes”, Huawei, HiSilicon
[bookmark: _Ref477417547]R1-1700111, “Implementation and Performance of LDPC Decoder”, Ericsson
[bookmark: _Ref477525205]C. Studer, N. Preyss, C. Roth and A. Burg, "Configurable high-throughput decoder architecture for quasi-cyclic LDPC codes," 2008 42nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2008, pp. 1137-1142.
[bookmark: _Ref477888409]Y. Sun, M. Karkooti and J. R. Cavallaro, "VLSI Decoder Architecture for High Throughput, Variable Block-size and Multi-rate LDPC Codes," 2007 IEEE International Symposium on Circuits and Systems, New Orleans, LA, 2007, pp. 2104-2107.
[bookmark: _Ref477955190]R1-166370, “LDPC rate compatible design,” Qualcomm Incorporated, RAN1 #86, Gothenburg, Sweden.
[bookmark: _Ref477955197]R1-1703001, “Performance evaluation of LDPC Code”, Samsung
[bookmark: _Ref478056291]“LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures” (3GPP TS 36.213 version 10.3.0 Release 10)

image3.emf
Information length K, bits

QPSK, Rate=8/9

2000300040005000600070008000

6.2

6.3

6.4

6.5

6.6

6.7

E

s

/

N

0

t

o

g

e

t

B

L

E

R

=

0

.

0

1

,

d

B

Code A, Layered BP

Code A, Fast Layered BP

Code B, Layered BP

Code B, Fast Layered BP

X: 4800

Y: 6.179

X: 4800

Y: 6.264

X: 7168

Y: 6.165

X: 7168

Y: 6.204

image4.png

image5.png

image6.emf
0.20.30.40.50.60.70.80.9

Rate

5

10

15

20

25

T

h

r

o

u

g

h

p

u

t

,

G

b

p

s

LTE throughput scaled to 20 Gbps

Code A, block parallel decoder with 2 cores

Code A, block parallel decoder with 4 cores

Code A, block parallel decoder with 6 cores

Code A, block parallel decoder with 8 cores

Code B, block parallel decoder with 2 cores

Code B, block parallel decoder with 4 cores

Code B, block parallel decoder with 6 cores

Code B, block parallel decoder with 8 cores

NC-QRO, block parallel decoder with 1 core

NC-QRO, block parallel decoder with 2 cores

NC-QRO, block parallel decoder with 3 cores

NC-QRO, block parallel decoder with 4 cores

image1.png

image2.emf
Information length K, bits

QPSK, Rate=8/9

2000300040005000600070008000

6.3

6.4

6.5

6.6

6.7

6.8

6.9

E

s

/

N

0

t

o

g

e

t

B

L

E

R

=

0

.

0

1

,

d

B

Code A, Layered Offset MinSum

Code A, Fast Layered Offset MinSum

Code B, Layered Offset MinSum

Code B, Fast Layered Offset MinSum

X: 7040

Y: 6.505

X: 7040

Y: 6.371

X: 5760

Y: 6.45

X: 5760

Y: 6.34

