

3GPP TSG RAN WG1 Meeting #88bis R1-1704247
Spokane, USA, 3rd - 7th April 2017

Agenda Item:	8.1.4.2.1.1
Source:	Huawei, HiSilicon
Title:	Polar Coding Design for Control Channel
Document for:	Discussion and Decision

[bookmark: _Ref124589665][bookmark: _Ref71620620][bookmark: _Ref124671424]Introduction
For polar code design for NR control channels the following conclusion was agreed in RAN1#88[1]:
Conclusion:
1) Until RAN1#88bis, work together on a coding scheme that achieves the benefits of both Alts 1&2
· With J’ bits for the purpose of assisting the polar decoding, where 0<=J’<=Jmax , aiming for Jmax , e.g. in the region of 8 (other values are not precluded)
· This does not preclude the use of the J bits for assisting decoding
· Note that any PC-frozen bits would be considered to be among the J’ bits
· The following are examples:
J bits CRC + J’ bits CRC + basic polar;
J bits CRC + J’ bits distributed CRC + basic polar;
J bits CRC + J’ PC bits + basic polar; (i.e. PC-Polar)
J bits CRC + J’ Hash sequence + basic polar;
(J + J’) bits CRC + basic polar
In the past meetings, various “assistant bits + basic polar” schemes have been proposed. The idea of “using assistant bits for polar decoding” has been widely adopted, including PC-Polar [2], CA-Polar [3], a joint PC- & CA-Polar [4], CRC-Hash Polar [5], and distributed-CRC Polar [6][7][8]. The various solutions differ in terms of number of assistant bits, their usage (for error detection and/or correction), positions and values.
In RAN1#88, there was some discussion on limiting the maximum value of J’, denoted as Jmax, e.g. in the region of 8, although it was clarified that other values are not precluded in the agreement. According to our understanding, the main considerations to keep J’ relatively small, e.g. in the region of 8, are perhaps the following:
· Consideration 1: A large number (J’) of the assistant bits would take a large number of the reliable bit positions that should have been allocated to the information bits, which would degrade the code property (e.g. good BLER performance).
· Consideration 2: Some additional logic and latency are required to determine a large number (J’) of the assistant bits, their positions and their values.
In this contribution, we further discuss whether the above two considerations can be resolved without limiting the value of J’. In the following, we denote J’ = Ja’ + Jb’, where Ja’ is number of assistant bits whose bit positions are carefully chosen to guarantee good code property, while Jb’ is the number of remaining assistant bits. In particular, we advocate the following:
1) Keep the value of Ja’ small. This would make more reliable bit positions to be available for information bits, thus addressing consideration 1 above. Further, a small value for Ja’ reduces the logic and latency of finding the corresponding Ja’ bit positions, which helps to address consideration 2 above.
2) The value of Jb’ equals the number of all remaining frozen bit positions, where the remaining frozen bit positions are derived after excluding punctured/shortened bit positions, the bit positions used for information bits (including CRC bits), and the bit positions used by the Ja’ assistant bits. Consequently, the bit positions for the Jb’ assistant bits can be naturally derived without additional procedure, which helps to address consideration 2 above as well.
3) Further, it is shown in the contribution that complexity of setting the values of J’ = Ja’ + Jb’ assistant bits is marginal.
According to the above principles, we show in this contribution that a PC-CA polar code can 1) exhibit good BLER performance; 2) allow the BLER performance to improve as the list size increases, without degrading the false alarm rate; 3) be constructed without a hard limit on the number of assistant bits (note that the complexity to handle these assistant bits is marginal as shown later in this contribution).
Besides, we also investigate the Hash-polar code and distributed CRC polar code designs. In particular, we note that early termination attributed to distributed parity-check in distributed CRC polar code would help reduce the average power consumption and latency in blind detection.
Notations:
K:	information bits length
M:	code block length
N:	mother code block length, equal to
R: 	code rate
I: 	Information set
F: 	Frozen set
PCF: PC-Frozen
P:	Shortened/Punctured Pattern
[bookmark: _Ref477266525]PC-CA Polar Design
We review a joint PC- and CA-Polar scheme [4] that takes advantage of both types of assistant bits:

Figure 1.	Joint PC-and CA-Polar scheme
· Both J CRC bits and J’ PC frozen bits are used for error correction (path pruning)
· J CRC bits are also used for error detection and the number of CRC checks is limited to T times for FAR consideration
As shown in Figure 2, K-bit information, J-bit CRC, and Ja’-bit PC-frozen take the most reliable bit positions. Among them, the Ja’-bit PC-frozen takes the bit positions with a minimum row weigh (wmin) in [2][12]. The value of wmin is in term of (K+J+Ja’). Thus, a parallelized selection of Ja’ PC frozen bits is achieved by a look-up-table (LUT) that stores all pre-calculated wmin.

[bookmark: _Ref477814743]Figure 2.	Reserved K +J + Ja’ most reliability bits positions for information bits, CRC bits, and PC frozen bits
The value of Ja’ shall be limited, in order to make more reliable bit positions to be available for information bits and also reduce the logic and penalty for the LUT of wmin. In detail, we construct the PC-CA polar code as follows:
1. Limit the number (, see Appendix A) of the PC frozen bits competing for the most reliable bit positions against the information bits and CRC bits.
2. Skip the bit positions to be shortened and/or punctured and the Ja’ most reliable bit positions with wmin, when selecting K+J most reliable bit positions for the information bit and CRC bits.
3. Use all the remaining bit positions (except those to be shortened and/or punctured) as PC frozen bits to avoid any logic and latency to search for additional Jb’ assistant bits.
4. Set the values on these J’= Ja’+ Jb’ bit position by a prime-length cyclic shift register.
In other words, Point #1 ensures more reliable bit positions for the information bits and CRC bits; and Point #3 reduces the implementation cost (See Section 3).
Next we focus on how to obtain wmin in Point #1 on the fly. Figure 3 shows how the value of wmin decreases along with K’ (=K+J+Ja’). Instead of storing all wmin for all the K’, we store log2(N) transition-points of wmin so that a determination of wmin turns into a search for the transition-points of wmin, given a K’ value.
[image:]
Figure 3.	Minimal hamming weight for different K’
As an example, for N=1024 the transition-points are listed in Table 1.
Table 1. Transition-points for K’ and minimal hamming weights
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	Ktransition
	2
	7
	21
	56
	134
	287
	531
	805
	984
	1024

	Htransition
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

Assume K’=100, then use Table 1 to find wmin as follows.
Step 1: find index K’=100 within the elements in Ktransition, we find that it is the 4th element.
Step 2: take the corresponding Htransition = 6, and we have wmin= 26 = 64.
The value of the J’ assistant bits are set by a length-5 cycle shift register operation as shown in Appendix A, which is based on [2].
[bookmark: _Ref477816073]Implementation Evaluation
The PC-CA Polar code has similar implementation cost as CA-Polar code. A decoder treats the PC frozen bits similarly as frozen bits. The details can be found in Appendix B.
· No decoding path splitting, path metric sorting, and path pruning are required for neither frozen bits nor PC frozen bits.
· [bookmark: _GoBack]Similarly to CA-Polar that updates the decoding path metric on a frozen bit after comparing the decoded frozen bit value against an expected value of 1’b0, PC- and PC-CA Polar update the decoding path metric on a PC frozen bit after comparing the decoded PC frozen bit value against an internally accumulated PC value.
· Since a decoder skips all the frozen bits prior to the 1st information bits, there is no PC frozen bit prior the 1st information bit.
· In the case that a UE-ID is masked on the frozen bits [18], these non-all-zero frozen bits and PC frozen bits become even more similar to each other. Note that the PC frozen bits and UE-ID-masked frozen bits can well coexist attributed to the linear nature of the latter.

Three types of Polar codes had been evaluated to estimate the power consumption percentage of the PC module, including 1. PC-Polar, 2. CA-Polar and 3. PC-CA Polar. Note that for PC-Polar, CA(CRC-Aided) module is excluded, no input signal is routed to CA module; and for CA-Polar, PC module is excluded, no input signal is routed to PC module.
The evaluation results are show below:
Case 1: K=200, N=300
	Module　
	Power consumption percentage

	CA module
	0.41%

	PC module
	0.42%

Case 2: K=80, N=240
	Module　
	Power consumption percentage

	CA module
	0.51%

	PC module
	0.52%

From the above results, both PC and CA module consume a tiny proportion of power consumption (the power consumption is measured from the case with two codewords simultaneously decoded in a single decoder; the energy consumption is obtained by multiplying the power level by the number of cycles required for each (K,N) pair).
According to pre-layout simulation results, the additional area & power consumption due to the PC-CA scheme compared to CA-only scheme is almost negligible. The reasons are two-fold: (i) the PC frozen generation module is small; (ii) the F/G function calculation and PM (path-metric) sorting operation consume the majority of the power.
Observation 1: The additional power consumption of PC-CA polar is only ~0.5% in comparison with CA-polar; the additional area is negligible (according to Appendix B).
Performance Evaluation
We consider the following requirements to evaluate the performance:
· False Alarm Rate (FAR): an equivalent FAR target (<~10-5) with a 16-bit CRC reserved for error detection. For CA-SCL decoder, if its CRC is checked on the first T paths [4][9], then the same level of FAR to LTE can be achieved with a 16+log2 (T) bit CRC.
· Block Error Rate (BLER): CA-Polar with 19-bit CRC at list size of 8 as reference.
· List Gain: the code design should allow variations in the implementation of the decoding algorithm and should not limit further improvement of the decoding algorithm. As stated in [9], [10] and [4], “larger list size is still possible” and “the implemented list size is up to UE decision”. Although we evaluate list 8 as the baseline, evaluations of other values are not precluded [11].
In the following, we compare two different schemes with different list size:
1) CA-Polar:
· 19 (J)-bit CRC is used for both error correction and error detection.
· Maximum T=8 times CRC check is allowed for a CA-SCL decoder to ensure the FAR.
2) PC-CA Polar:
· 18 (J)-bit CRC is used for both error correction and error detection
· All frozen bits are used as PC frozen bits for error correction (path pruning), and its position are chosen according to section 2 and Appendix A.
· Cycle shift register operation on PC frozen bits are applied as shown in section 2 and Appendix A.
· Maximum T=4 times CRC check is allowed to ensure the FAR.

In Figure 4, the required SNR to achieve a 0.01 BLER is plotted for different info block lengths and code rates. The curves for CA-Polar are plotted in black, and the curves for PC-CA Polar are plotted in red.
 [image:]
Figure 4. BLER Performance for L ={8,32}
As we can see from Figure 4, CA-Polar has very small performance gain as the list size increases from 8 to 32. In contrast, the performance improvement for PC-CA Polar is significant when the list size increases from 8 to 32. With list 32, the gain of PC-CA Polar over CA-Polar is larger than 0.5dB.
Observation 2: PC-CA polar has better performance than CA-polar in case of L=8 and its performance improves more than CA-polar when L>8.
Distributed-CRC Polar Code
A distributed or interleaved CRC polar code is proposed in [6][7][8]. After a permutation of the CRC generator matrix, some parity check bits are relocated in the middle of an information block. According to [7], a decoder can treat them in different ways: as information bits for error detection or as dynamic frozen bits, PC bits, for error correction. Moreover, it was noted in [8] that about 30% complexity can be saved due to the early termination, which makes much sense in blind detection of PDCCH. Nevertheless, to construct a distributed CRC polar code needs a permutation of the CRC generator matrix for every given information block length (K). The Gaussian elimination algorithm proposed in [8] would introduce some non-negligible addition logic and latency, actually it can be further simplified based on polynomial division method in implementation. Since only interleaving is introduced within CRC encoded codeword before polar encoding, BLER and FAR (type I[footnoteRef:1]) performance should be similar to CA-Polar. [1: Type-I FAR = (# of events that CRC pass and wrong decoding) / (# of events of wrong decoding).]

In this section, we focus on the early termination aspects of the distributed CRC bits solution, to investigate the complexity-reduction brought by the early termination. The following parameters are defined as evaluation criteria:
· Early termination Ratio (ET Ratio) = Early terminated decoding attempts / All decoding attempts
· Saved Computational Complexity Ratio in Early Terminated Decoding Attempts (SCCR in ERDA) =Remaining non-decoded non-frozen bits in all early terminated decoding attempts / All non-frozen bits in all early terminated decoding attempts
· Total Saved Computational Complexity Ratio (TSCCR): ET Ratio * SCCR in ETDA
Figure 5 shows the early termination algorithm that we simulate with a SCL decoder that treats the distributed parity check bits as information bits. At the initial stage, all the surviving paths are labeled as “failure-free”. Once a distributed parity-check bit is decoded, the decoder would use it to check all the “failure-free” survival paths and labels one path as “failure” if it doesn’t pass the error test. If and only if all paths are labeled as “failure”, an early termination is activated.
[image:]
[bookmark: _Ref477869511]Figure 5	A Label-driven Early Termination of Distributed CRC polar Code
A 19-bit distributed CRC and a decoder with a list size of 8 are used in the simulations. The measurements are the following:
· ET Ratio is close to 100%.
· SCCR in ERDA is between 20% and 50%.
· TSCCR is between 20% and 50%.
[image:]
Figure 6 	Performance of Early Termination with 19-bit Distributed CRC bits and list L=8
Observation 3: The early termination due to distributed parity-check saves 20% to 50% computational complexity, depending on the DCI payload size.
We also run simulations to check whether an early termination scheme would degrade the FAR (type-II[footnoteRef:2]) with AGWN input. The same simulation parameters, 19-bit distributed CRC bits and a decoder with a list size of 8, are used. [2: Same as Type-I FAR except that AWGN is the input to the decoder.]

[image:]
[bookmark: _Ref477870525]Figure 7. 	FAR (type-II) of Distributed CRC polar code with Early Termination
Observation-4: FAR performance is the same with/without early termination for distributed CRC polar with AGWN input.
Hash-Polar
In the Hash-Polar solution [5], Hash bits are calculated from the information bits before polar encoding and used to assist error correction in polar decoding. In this section, we compare the BLER performance of Hash-Polar with CA-Polar.
The reliability sequence is calculated through the polarization weights method, and bit reversal shortening is used as the rate matching method.
[image: cid:image001.png@01D2A1B7.AEB52580]
Figure 8 	BLER performance comparison between Hash Polar Code and CA Polar Code
From Figure 8, we can see that the BLER performance for Hash-Polar is comparable with CA-Polar. The FAR performance and the capability to obtain list gain is similar to CA-Polar by using the design in [5] since the Hash bits are essentially parity check bits like CRC bits.
Observation 5: Hash-CRC Polar has comparable performance to CA-Polar.

Conclusion
In this contribution we considered various polar coding schemes, and discussed and evaluated the impact on complexity and performance of the bits assisting polar decoding, considering the code construction for the different types of assistant bits. We also investigated the early termination aspect of distributed CRC polar scheme, and evaluated the impact on computational complexity and FAR performance. We have the following observations.
Observation 1: The additional power consumption of PC-CA polar is only ~0.5% in comparison with CA-polar; the additional area is negligible (according to Appendix B).
Observation 2: PC-CA polar has better performance than CA-polar in case of L=8 and its performance improves more than CA-polar when L>8.
Observation 3: The early termination due to distributed parity-check saves 20% to 50% computational complexity, depending on the DCI payload size.
Observation 4: FAR performance is the same with/without early termination for distributed CRC polar with AGWN input.
Observation 5: Hash CRC Polar has comparable performance to CA-Polar.

Given the above observations, we have the following proposal:
Proposal 1: PC-CA Polar is taken as the baseline for Polar code construction, with further work to potentially support early termination capability.

References
[1] [bookmark: _Ref477333292]Chairman’s notes in 3GPP TSG RAN WG1 #88
[2] R1-1700088, “Summary of polar code design for control channels”, Huawei, HiSilicon, 3GPP TSG RAN WG1 Ad Hoc
[3] R1- 1700832, “Design of Polar codes for control channel”, Qualcomm Incorporated, 3GPP TSG RAN WG1 Ad Hoc
[4] R1- 1701701, “Parity-Check polar and CRC-aided polar evaluation”, Huawei, HiSilicon, 3GPP TSG RAN WG1 #88
[5] R1- 1702110, “Design of polar codes for eMBB control channel”, CATT, 3GPP TSG RAN WG1 #88
[6] R1- 1701033, “Polar codes design for UL control”, Nokia, Alcatel-Lucent Shanghai Bell, 3GPP TSG RAN WG1 Ad Hoc
[7] R1- 1701630, “Design of CRC-assisted Polar Code”, Ericsson, 3GPP TSG RAN WG1 #88
[8] R1- 1703497, “Details of CRC distribution of Polar design”, Nokia, Alcatel-Lucent Shanghai Bell, 3GPP TSG RAN WG1 #88
[9] R1- 1702645, “Comparison of Polar codes for control channel”, Qualcomm Incorporated, 3GPP TSG RAN WG1 #88
[10] R1- 1701632, “Polar Code Design Parameters”, Ericsson, 3GPP TSG RAN WG1 #88
[11] Chairman’s notes in 3GPP TSG RAN WG1 Ad Hoc
[12] R1-1700090, “On latency, power consumption and implementation complexity for polar codes”, Huawei, HiSilicon, 3GPP TSG RAN WG1 Ad Hoc
[13] [bookmark: _Ref478030201]B. Li, et al, “A Decision-Aided Parallel SC-List Decoder for Polar Codes,” arXiv preprint arXiv:1506.02955, 2015.
[14] [bookmark: _Ref478030357]A. Yazdi, et al, “A simplified successive-cancellation decoder for polar codes,” IEEE communications letters, 2011, 15(12): 1378-1380.
[15] [bookmark: _Ref478030229]G. Sarkis et al, “Fast List Decoders for Polar Codes,” IEEE JSAC, Vol. 23, No. 2,
[16] [bookmark: _Ref478030216]Lin et al, “A High Throughput List Decoder Architecture for Polar Codes,” IEEE Trans. VLSI, Vol 24, No. 6, Jun. 2016.
[17] [bookmark: _Ref478030432]S. A. Hashemi, C. Condo, and W. J. Gross, “Fast Simplified Successive-Cancellation List Decoding of Polar Codes,” arXiv preprint arXiv:1701.08126, 2017.
[18] [bookmark: _Ref478041352]R1- 1702277, “Polar Code Design for DCI”, AT&T, 3GPP TSG RAN WG1 #88

Appendix A: PC-CA Polar Construction Steps
The PC-CA Polar construction and encoding steps are summarized below:
Step 1: Information/PC Frozen/punctured set selection
Following the general procedures described in [2], and adopting the simplification methods described in Section 2, we give a detailed description of the key construction steps as follows.
1) Select N-M positions as shortened/punctured set P
2) Select K information (here K includes J bits CRC) bits set by descending reliability order
· Skipping shortened/punctured positions in P
· Skipping reliable bits position with row weight wmin
· The row weight wmin is determined on-the-fly according to Section 2.
· The maximum number of skipped reliable bits position is Ja’, e.g. .
3) Select all positions except K and P as PC frozen bits
Step 2: PC frozen bits generation
The PC frozen bits value are generated by a p-length (e.g. p=5) cyclic shift register operation like below:
1. initialize a p-length cyclic shift register, y[0],…,y[p-1], to 0
2. go through the elements in [u0, u1, u2, … ,uN-1],
· cyclic left shift the register
· if the i-th sub-channel is information: 	set y [0] = (ui XOR y[0])
· if the i-th sub-channel is PC frozen: 		set ui =y [0]
Step 3: Arikan Polar encoding
After assigning the values of information/PC frozen bits, Arikan Polar coding is performed by multiplying the N-sized vector u by a Kronecker kernel matrix to obtain an N-sized code word x.

Step 4: Rate-matching
Finally, the N-sized code word x is shortened/punctured into M-sized code length according to the shortened/punctured set P.

Appendix B: PC-CA Polar Implementation Detail
PC Frozen Bits Generation
Figure 9 illustrates the PC Frozen (PCF) generation flow that inserts the PC frozen bits to the 32-bit vector in parallel.

Figure 9.	PCF generation flow
Positions of PC frozen bits:
PC bit mask indicates the bit positions for all PC frozen bits. It is implemented with a NAND gate logic to combine the information bit(including CRC bit) mask with the rate-matching bit mask (which indicates the shortened / punctured bit positions), as illustrated in Figure 10. Since all remaining available bit positions are allocated for the PC frozen bits, no extra storage and logic is required.

Figure 10: PC bit mask

Values of PC frozen bits:
Figure 11 shows a 32-bit wide PCF generation module that implements the cycle shift register operation in parallel. At the encoder, information bits are inserted to their corresponding positions in the 32-bit input vector, while other positions are set to zero. At the decoder, both information and PC-frozen bits are processed by the PCF generation module to accumulate internally the parity-check values and extract the expected parity check values used to detect PC-Frozen bit mismatches.

Figure 11.	PCF generation module

Decoding Latency
A variety of low-latency decoding techniques have been proposed in literature, including decision-aided decoding [13] and simplified successive-cancellation (SSC) [14]. Both techniques work well with list decoding and this section demonstrates how both schemes apply to PC-CA Polar.
1. Decision Aided SCL Decoding:
It takes the advantages of the reliabilities of the information (including CRC) and PC frozen bits.
First of all, we specify:
· Each bit position is labeled as “good” or “bad” in terms of their reliability or order in the ordered sequence.
· The 4 consecutive bit positions are treated as one group.
When a SCL decoder is decoding a 4-bit group other than bit by bit:
· Mode-1: When the current group contains both reliable (“good”) and unreliable (“bad”) bits, it computes the LLR and then updates, extends and sorts the path metrics.

· Mode-2: When the current group contains only reliable (“good”) bits, regardless information, CRC, or PC frozen bits, it computes the LLRs only and doesn’t extend nor sort the paths.
According to the statistics in [12], about 50% bit positions would be treated in Mode-2 at a cost of 0.1dB BLER performance loss so that the overall decoding latency is reduced.
2. SSC-List decoding:
On top of the decision-aided-decoder, the SSC-List technique [12][15][16][17] is applied to the PC-CA Polar decoder. Below is an example of a SSC tree of N=128, K=64 (info+CRC) as follows (J’a = 1 according to Section 2):

Figure 12: A SSC Tree of a PC-CA Polar Decoder
Such concepts as Rate-1, Rate-0 and repetition node in [14] as well as the methods described in [17] are directly applied to the PC/CA polar decoder by treating all the PC frozen bits as frozen bits in a SSC decoder:
· Rate-1 node: contains only the information/CRC bits
· Rate-0 node: contains only the PC frozen bits
· Repetition node: contains only one information/CRC bit
Processing a Rate-1 Node
Besides usual processing operation on a Rate-1 node, it is equipped with a PC frozen bits generator module as described in Section 3.1.

Figure 13: PC-CA Polar Node-1 decoding flow
The PCF generation module can perform multi-level node-1 accumulation, therefore it supports multiple levels of parallelism during decoding. We use the maximum level = 32 as an example.

Figure 14.	PCF generation module (for decoder)
In figure 14, level-x means the level of parallelism, i.e., the number of LLR input. For example, if x = 16, there are 16 LLR input. Correspondingly, 16 bits are decoded and output at the same time.
Meanwhile, the PC module will generate 16 PC frozen bits at the background. The level of parallelism determines which data will be fed to the PC feedback registers after the 16 PC frozen bits are generated. The dashed window in different color corresponds to different value of x.
This step can run in parallel with partial sum accumulation. Thus, it does not cost any additional cycles.

Processing a Rate-0 node
Slightly different from the usual processing operation on a Rate-0 node, the PC frozen bits are non-all-zero bits output from a PC-bit generation module, which is in the form of length-2/4/8/16/32 bit vectors. Then, a Kronecker function is executed to convert the u(x) value to partial sum value PSUM(x). In multi-bit decoding, PSUM(x) is used to calculate the Path Metric. This step can run in parallel with the next F/G function. Thus, it does not cost any additional cycles. After node-0 completes, we can continue to generate PC values, which reuses the PCF generation module for decoder. All we need to do is set all input data to zero and tell the PCF module what the x value is.

Figure 15: PC-CA Polar Node-0 decoding flow

Processing a Repetition node
A 2/4/8/16/32-sized repetition node has one single information bit. To process this node, the same logic for Rate-0 node is reused. The key lies in PSUM (partial sum) calculation, which is necessary for Path Metric accumulation.
Let’s take 4-sized repetition node for example. The partial sum is defined as PSUM(x) = [x p2 p1 p0]×G4, where x is the value of the information bit and G4 is the 4×4 kernel. In basic Polar, the PSUM values are either PSUM(0)=[0 0 0 0] or PSUM(1)=[1 1 1 1]. For PC-CA Polar, we need to calculate the PSUM value according to the PC-Frozen values. However, we can reuse the Rate-0 logic to do so:
1. Simply treat the information bit to be a 0-valued “frozen bit”, then this node becomes Rate-0. PSUM(0) = [0 p2 p1 p0]×G4.
2. Now that the information bit can also be 1-valued. It is straightforward to see that PSUM(1)= [1 p2 p1 p0]×G4 = ~([0 p2 p1 p0]×G4) = ~ PSUM(0). The logic in Rate-0 can be reused with a “~” (negation) logic.

image2.emf
K+J+Ja’N-K-J-Ja’Reliability from low to high

Microsoft_Visio___222.vsdx
K+J+Ja’
N-K-J-Ja’
Reliability from low to high

image3.emf
K'

12721561342875318059841024

M

i

n

i

m

a

l

H

a

m

m

i

n

g

W

e

i

g

h

t

0

1

2

3

4

5

6

7

8

9

10

Minimimal hamming weight for different K'

image4.emf
Info length

020406080100120140160180200

E

s

/

N

0

(

d

B

)

-8

-6

-4

-2

0

2

4

6

8

Average Received Es/N0 Points At BLER=1e-2 for QPSK

CA-Polar,L8,R=2/3

CA-Polar,L8,R=1/2

CA-Polar,L8,R=1/3

CA-Polar,L8,R=1/6

CA-Polar,L8,R=1/12

PC-CA Polar,L8,R=2/3

PC-CA Polar,L8,R=1/2

PC-CA Polar,L8,R=1/3

PC-CA Polar,L8,R=1/6

PC-CA Polar,L8,R=1/12

CA-Polar,L32,R=2/3

CA-Polar,L32,R=1/2

CA-Polar,L32,R=1/3

CA-Polar,L32,R=1/6

CA-Polar,L32,R=1/12

PC-CA Polar,L32,R=2/3

PC-CA Polar,L32,R=1/2

PC-CA Polar,L32,R=1/3

PC-CA Polar,L32,R=1/6

PC-CA Polar,L32,R=1/12

image5.png

image6.emf
Info Length

020406080100120140160180200

R

a

t

i

o

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DistCRC-19,L8, QPSK, Early Termination performance

ET Ratio,R=1/12

SCCR in ETDA,R=1/12

TSCCR,R=1/12

ET Ratio,R=1/6

SCCR in ETDA,R=1/6

TSCCR,R=1/6

ET Ratio,R=1/3

SCCR in ETDA,R=1/3

TSCCR,R=1/3

ET Ratio,R=1/2

SCCR in ETDA,R=1/2

TSCCR,R=1/2

ET Ratio,R=2/3

SCCR in ETDA,R=2/3

TSCCR,R=2/3

image7.emf
Es/N0 (dB)

-20-15-10-505101520

F

A

R

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

K=48,L=8,FAR Performance

DistCRC,R=1/12

DistCRC,R=1/6

DistCRC,R=1/3

DistCRC,R=1/2

DistCRC,R=2/3

FAR=2

-16

image8.png

image9.emf
PCF Generation32bits input32bits output32 Bits PC & PC BIT MASKPC BITS MASK32 Bits input & (~PC BIT MASK)Data0 | Data1PC insertion outputData0Data1

oleObject1.bin
PCF Generation

32bits input

32bits output

32 Bits PC & PC BIT MASK

PC BITS MASK

32 Bits input &
(~PC BIT MASK)

Data0 | Data1

PC insertion output

Data0

Data1

image10.emf
PC BIT MASKINFORMATION BIT MASKSHORTENED/PUNCT. BIT MASK

Microsoft_Visio___553.vsdx
PC BIT MASK
INFORMATION BIT MASK
SHORTENED/PUNCT. BIT MASK

image11.emf
XORXORXORXORXORXORXORinput register5555555555552232 bit output32 bit input output registeru29~u25u24~u20u19~u15u14~u10u9~u5u4~u0u31u30XOR logicFeedback register

Microsoft_Visio___664.vsdx
XOR
XOR
XOR
XOR
XOR
XOR
XOR
input register
5
5

5
5
5
5
5
5
5
5
5
5
2
2
32 bit output
32 bit input

output register
u29~u25
u24~u20
u19~u15
u14~u10
u9~u5
u4~u0
u31u30

XOR logic

Feedback register

image12.emf
Rate-1: InformationRate-0: PC FrozenRepetition

Microsoft_Visio___775.vsdx
Rate-1: Information
Rate-0: PC Frozen
Repetition

image13.emf
Path metric calculation Node-1 x bits decisionLevel-x LLR inputPartial sum accumulationNext F/G functionInput to PCF generation module

Microsoft_Visio___886.vsdx
Path metric calculation
Node-1 x bits decision
Level-x LLR input
Partial sum accumulation
Next F/G function
Input to PCF generation module

image14.emf
XORXORXORXORXORXORXORinput register5555555555552232 bit output32 bit input output registeru29~u25u24~u20u19~u15u14~u10u9~u5u4~u0u31u30XOR logicFeedback registerPC register from level-16PC register from level-32PC register from level-8PC register from level-4PC register from level-2

Microsoft_Visio___997.vsdx
XOR
XOR
XOR
XOR
XOR
XOR
XOR
input register
5
5

5
5
5
5
5
5
5
5
5
5
2
2
32 bit output
32 bit input

output register
u29~u25
u24~u20
u19~u15
u14~u10
u9~u5
u4~u0
u31u30

XOR logic

Feedback register
PC register from level-16
PC register from level-32
PC register from level-8
PC register from level-4
PC register from level-2

image15.emf
Next F/G functionNode-0Path metric calculationPartial sum accumulationInput to PCF generation moduleOutput from PCF*G(e.g. G is 4x4 kernel)

oleObject2.bin
Next F/G function

Node-0
Path metric calculation

Partial sum accumulation

Input to PCF generation module

Output from PCF*G
(e.g. G is 4x4 kernel)

image1.emf
Information Bits: KAssistant Bits: J CRC + J’ PCPolar Encoding

Microsoft_Visio___111.vsdx
Information Bits: K
Assistant Bits: J CRC + J’ PC
Polar Encoding

