3GPP TSG RAN WG1 Meeting #88			R1-1701884
Athens, Greece, 13th – 17th February 2017
Agenda Item: 8.1.4.2.1
Source: NEC
[bookmark: _GoBack]Title: Polar code design for control channel
Document for: Discussion/Decision

1. Overview
In RAN1 NR ad-hoc January (Spokane) meeting, the following matters were agreed upon regarding polar code design for control channel:
	Agreement:
· In NR Polar Code discussion, polar codes will be described without bit reversal in the encoder, i.e.:
 [image:]
 [image:]
· Maximum mother code size of Polar code, N=2n, is:
· 256 <= Nmax,DCI <=1024 for downlink control information
· 1024 <= Nmax,UCI <= 2048 for uplink control information
· Exact values to be revisited with the aim of agreeing at RAN1#88
· To compare CRC-related aspects of polar code design,
· The same FAR performance (the same as LTE) should be considered for a fair comparison
· List size Lmax 8 is the baseline (evaluations of other values are not precluded)
· Performance metrics (may be based on analytic derivation)
· BLER
· FAR (with AWGN as input to the decoder)
· Polar codes for control channels support one of the following alternatives:
· Alt. 1: CRC + “basic polar” (i.e. as per above agreed description) codes
· 1a: Longer CRC
· e.g.	(J + J’) bits CRC + basic polar
· 1b: J bit CRC
· The J bits can be distributed
· The CRC can be used for both error detection and error correction
· Alt. 2: J bits CRC + concatenated polar codes
· e.g.	 J bits CRC + J’ bits CRC + basic polar;
 	 J bits CRC + J’ bits distributed CRC + basic polar;
 	 J bits CRC + PC bits + basic polar; (i.e. PC-Polar)
 	 J bits CRC + Hash sequence + basic polar;
· J bits CRC is only used for error detection

Polar codes in control channel of new radio (NR) would require short code lengths as opposed to typical polar code lengths which are powers of two. Methods like puncturing or shortening of codeword have been in discussion to achieve this objective. In this contribution, we analyze some puncturing/shortening schemes for polar codes in prior art, explore their underlying philosophy and extract the key design principles that result in best puncturing/shortening pattern. To design a good puncturing/shortening scheme, it is crucial to understand the strengths and weaknesses of each scheme and the conditions under which each scheme performs well. In this contribution, a shortening scheme is introduced which attempts to optimize the non-frozen set by preventing the most reliable bit-channels from getting frozen, as much as possible. The design rationale of the proposed method is explained to evince why it works well. Simulation results are shown where the proposed method outperforms an earlier method.

2. Polar code synopsis
Polar codes exploit the principle of a linear transformation called polar transform to polarize N independent copies of a binary input discrete memoryless symmetric channel into a set of high-capacity bit-channels (call it) and a set of low-capacity bit channels (call it , the complement set of set). The high-capacity bit-channels are then used for sending information bits while the low-capacity bit channels are set to a fixed value. Codeword of an polar code is constructed as,where is constructed by putting information bits at the indices contained in the set , and 0 in set . is a bit-reversal permutation matrix which permutes the order of the vector before multiplying with the generator matrix , and it can be omitted to preserve simplicity. denotes the generator matrix which is an times Kronecker product of a matrix , referred to as Arikan kernel. Thus, following the agreement of RAN1 NR ad-hoc January (Spokane) meeting, polar code encoding without bit-reversal permutation can be represented as .

3. Puncturing and shortening in polar codes: Design principles
Restricting our attention only to the Successive Cancellation (SC) and SC-List decoders for polar codes, handful of contributions pertaining to puncturing in polar codes have drawn attention in recent 3GPP RAN1 meetings. For the rest of this document, let us consider polar codes without bit-reversal permutation in the encoder, according to the agreement of RAN1 NR ad-hoc January (Spokane) meeting. Puncturing has been a prevalent method to produce short length or high-rate codes from a longer mother code by eliminating some code bits from the codeword, just before transmission. Thus puncturing results in a code from a mother code, where is the number of punctured bits. Naturally, the decoder in the receiver side remains unaware of the punctured bits and can only make a random guess about the punctured bits (the initial Log Likelihood Ratio (LLR) values corresponding to the punctured bits are set to 0). This leads to increase in error rate which is inherent to most puncturing methods. [1] is a method named Quasi-Uniform Puncturing (QUP) wherein the first$ M code bits of a mother polar codeword are punctured. Design philosophy of QUP is centered on the objective of increasing the minimum Hamming distance of the punctured code. It is shown in [1] that the punctured generator matrix* in QUP method has a higher minimum row weight than that of random puncturing.
$Note that, for a polar code with bit-reversal permutation in the encoder, the bit-reversal permutation of the first M indices gets punctured in QUP [1].
*Punctured generator matrix is obtained by removing the columns corresponding to indices in puncturing set from the generator matrix of mother code.
Shortening on the other hand, is a method by which some information bits are set to zero before encoding such that it results in some of the code bits to become zero. Thus shortening results in a code from a mother code, where is the number of shortened bits. [2] introduced a method called Known Bit Puncturing where the frozen set is re-designed so as to make some of the code bits become zero. These zero-valued code bits are not transmitted. Since these code bits are always fixed to zero, so the decoder does not need to decode them (initial LLR values corresponding to these bits are set to infinity), which improves the error correcting performance of the resulting code. It may be noted that Known Bit Puncturing method generates non-unique patterns and it has been concluded in [2] that it is not easy to find the best of them. Specifically, in an exemplary case, the last# M code bits of the codeword may be punctured and their corresponding bit-reversal permutations may be set frozen according to [2].

4. Shortening algorithm for improved error rate performance
4.1. Algorithm and design philosophy
Here we introduce a shortening algorithm wherein in each step of Known Bit Puncturing method, we choose an index to puncture from the many non-unique alternatives that can optimize the frozen set in terms of Bhattacharyya parameter (Z). Since the algorithm in [2] modifies the frozen set, we aim to optimize this modified frozen set such that it contains relatively unreliable indices as much as possible. More specifically, the method works as follows:
1. At each step, all the weight-one columns of the generator matrix are listed up.
2. All the weight-one columns are ranked based on their error probability (or, Z parameter).
3. The weight-one column with highest value of Z parameter* is included in the shortening set and the row corresponding to the position of 1 in that column is included in frozen set.
4. The column and row index selected in step 3 are replaced by all zero vector.
Steps 1 to 4 are repeated for M times to obtain a set consisting of M indices to be shortened. Regarding the frozen set, its first part is obtained from step 3 above; the remaining indices of frozen set are chosen based on highest value of Z parameter (as in original polar codes) from the leftover indices. For decoding, the decoder sets the initial LLR values of the shortened positions to infinity. It is easy to see that the proposed shortening method has a higher sum of Z parameter of indices in the frozen set than the exemplary case shown in [2]. It may be noted that the error correcting performance of polar codes depend on the error probabilities of the indices contained in non-frozen set. Thus by including the relatively worse (unreliable) indices in the frozen set at each step of the shortening algorithm, the proposed method ensures that the best channels are prevented from getting frozen, to the greatest extent. This, in turn, is reflected in improved error rate performance of the proposed shortening algorithm. Fig. 1 shows a comparison of the Z parameters of the frozen and non-frozen set of the exemplary method shown in [2] and the proposed shortening method. The vertical red line shows the boundary between non-frozen set and frozen set; indices to the left of the red line are in non-frozen set and those to the right are in frozen set. As is evident from the figure, the Z parameter values of non-frozen indices in the proposed method are lower than the method in [2].
Observation 1: Proposed method is observed to have a non-frozen set with lower Z parameter value of the constituent bit-channels than the exemplary pattern in [2] at N=2048, K=600, M=848.

#Note that, for a polar code with bit-reversal permutation in the encoder, the bit-reversal permutation of the last M indices gets punctured in the exemplary method shown in [2].
*We assume that we have a pre-computed set of N indices in ascending or descending order of Z parameter or any other reliability-estimation metric. Absolute value of Z-parameter for each index is not needed for the proposed algorithm.
[image: C:\Users\0000011288435\Desktop\PolarCode_Survey\3GPP\NEC_Feb2017_Athens\3GPP_Figure\3GPP_Figure\3GPP_Z1200_0600.png]

Fig. 1. Comparison of Z parameters of the indices in Known Bit Puncturing method and the proposed shortening method for a (1200,600) shortened code constructed from (2048,600) mother code.

4.2 Simulation results
In the simulation, SC decoding and CRC-aided SCL decoding algorithms have been used over BI-AWGN channel with BPSK modulation. For the CRC-aided SCL decoder, list size of 8 and CRC-length of 16 were used. Comparing the FER performance of the proposed method with that in [2] as shown in Fig. 2 (a) and (b), it is evident that the proposed method outperforms the exemplary method described in [2]. The performance becomes even better with increase in code length. We know from the very design principle of the proposed method, it prevents the indices with higher reliability from getting frozen in each iteration. Hence, it has a more reliable non-
[image: C:\Users\0000011288435\Desktop\PolarCode_Survey\3GPP\NEC_Feb2017_Athens\3GPP_FigureV2\3GPP_FigureV2\3GPP_FER0600_0300v2.jpg]
[image: C:\Users\0000011288435\Desktop\PolarCode_Survey\3GPP\NEC_Feb2017_Athens\3GPP_FigureV2\3GPP_FigureV2\3GPP_FER1200_0600v2.jpg]

(a) (b)
Fig. 2 Comparison of Frame Error Rate (FER) performance of the exemplary method in [2] and the proposed shortening method. (a) is (600,300) shortened code constructed from (1024,300) mother polar code, (b) is (1200,600) shortened code constructed from (2048,600) mother polar code.

frozen set than the exemplary scheme in [2] which improves the error rate performance. However, it is worthy to study further using different parameter settings to verify if the proposed method always performs better than [2]. It also might be interesting to compare the proposed method with other puncturing methods.
Observation 2: Proposed method outperformed the method in [2] for the chosen simulation parameters used in the preliminary evaluation (N=1024, K=300, M=424) and (N=2048, K=600, M=848).

Proposal 1: Shortening method for polar code should be optimized in terms of error probability so as to generate the best error correcting performance.
Proposal 2: Design of optimal shortening or puncturing pattern for polar codes should be considered as subject for further study (FFS).

5. Summary
A new codeword shortening method for polar codes is introduced and preliminary evaluation results are presented. It is known that shortening algorithm modifies the frozen set of polar code which in turn affects the error rate performance of the resulting shortened code. We attempt to optimize (in terms of bit-channel reliability) the modified frozen set of the shortened code to ensure that relatively reliable bit-channels are prevented from being frozen, as much as possible.
Observation 1: Proposed method is observed to have a non-frozen set with lower Z parameter value of the constituent bit-channels than the exemplary pattern in [2] at N=2048, K=600, M=848.
Observation 2: Proposed method outperformed the method in [2] for the chosen simulation parameters used in the preliminary evaluation (N=1024, K=300, M=424) and (N=2048, K=600, M=848).

Proposal 1: Shortening method for polar code should be optimized in terms of error probability so as to generate the best error correcting performance.
Proposal 2: Design of optimal shortening or puncturing pattern for polar codes should be considered as subject for further study (FFS).

References
[1] K. Niu, K. Chen and J. R. Lin, "Beyond turbo codes: Rate-compatible punctured polar codes," 2013 IEEE International Conference on Communications (ICC), Budapest, 2013, pp. 3423-3427.
[2] R. Wang and R. Liu, “A Novel puncturing scheme for polar codes,” IEEE Commun. Lett., vol.18, no.12, pp.2081–2084, Dec. 2014.

image1.png
« The output of the polar encoder is: x) 1= u}~'Gy
® Gy is the generator matrix of size N
_[o
6= [1 i
— Gy = FO®n for any N =2",n > 1, where

. F= [} 2] and F®M is the n-th Kronecker power of matrix F

image2.png
Wz

s

U2

[Xz

Uy — P

image3.png
10

+ Proposed

o Method in

o

Bhattacharyya parameter
— — — —
=) =) =) =)

-
S,

-
S,

10

10°
0

1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Channel Index (after sorting)

image30.png
10

+ Proposed

o Method in

o

Bhattacharyya parameter
— — — —
=) =) =) =)

-
S,

-
S,

10

10°
0

1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Channel Index (after sorting)

image4.jpeg
—e— Method in [2] (SC)
—&— Proposed (SC)

—&— Method in [2] (SCL-8)
—— Proposed (SCL-8)

image40.jpeg
—e— Method in [2] (SC)
—&— Proposed (SC)

—&— Method in [2] (SCL-8)
—— Proposed (SCL-8)

image5.jpeg
—e— Method in [2] (SC)
—&— Proposed (SC)

—&— Method in [2] (SCL-8)
—— Proposed (SCL-8)

image50.jpeg
—e— Method in [2] (SC)
—&— Proposed (SC)

—&— Method in [2] (SCL-8)
—— Proposed (SCL-8)

