3GPP TSG RAN WG1 Meeting #86bis		R1-1610420
Lisbon, Portugal, 10th - 14th October 2016
Agenda Item: 8.1.3.1
Source: MediaTek Inc.
Title: Resolving Polar Code Memory Complexity Issue
Document for: Discussion and Decision

1. Overview
Although Polar code is proven to be a capacity achieving coding, one major debate on its applicability is the large decoder memory complexity. In particular, the memory complexity of Polar decoder is of O(L∙N), where L is the SCL decoder list size and N = 2n is the mother code bit length. Without fundamentally scaling down the memory complexity, Polar is regarded as inadequate for NR data channels with larger codeblocks [1].
Based on a recently proposed solution in [2], it can be verified that Polar code memory complexity issue can be effectively resolved via subcode-wise Polar encoding and decoding. Specifically, the memory complexity can be reduced from O(L∙N) to O(L∙N/M + N) where M is number of subcodes with reduced size of N/M. For a list-8 Polar decoder dealing with N-16384 Polar code, the memory complexity can be reduced to 18.8% with 16-subcode segmentation. Another useful application of the design in [2] is to enable decoding large codeblocks via reusing a small Polar decoder to perform subcode-wise decoding. In [3], it is shown that a small Polar decoder can effectively cover large codeblocks of 8192 info bits with less than 15% area of the corresponding LDPC decoder. This makes Polar decoder one very area-compact solution to handle low data rate downlinks in most of UE daily use.
This contribution is organized as follows. In Section 2, subcode-wise Polar encoding and decoding are introduced with more details of a specific design provided in the Appendix. In Section 3, performance verification for the subcode-wise Polar encoding and decoding is conducted. Finally, the contribution is summarized in Section 4.

2. Encoding and Decoding Design
Regarding that a Polar code exhibits very systematic structure, one can view it as multiple Polar subcodes interconnected via an inner polarization structure, as illustrated in Fig. 1 with 4 subcodes.
[image:]
Fig. 1: Viewing a larger Polar code as interconnected Polar subcodes
In the decoder side, such viewpoint can imply a low-complexity hybrid decoding where SCL decoding is applied subcode-wise while simple SC decoding is used across subcodes to exploit further polarization gain. By making hard decision after each subcode decoding, the SCL decoder complexity is confined to the subcode size. The overall decoder complexity is therefore reduced from whole-codeblock SCL decoing of O(L∙N) to one subcode SCL decoding plus one whole-codeblock SC decoding, i.e., O(L∙N/M + N).
[image:]
Fig. 2: Reducing complexity of whole-codeblock SCL to subcode SCL

Observation 1: Subcode-wise SCL decoding can reduce Polar decoder memory complexity from O(L N) to O(L N/M + N)
•	For N = 16384 and M = 16, memory complexity is only 18.8% of ordinary SCL decoder.
[bookmark: _GoBack]To make subcode SCL decoding more effective, local CRC for each of the first M-1 subcodes can be applied while the last subcode can reuse the global CRC, as illustrated in Fig. 3. However, regarding the recently proposed CRC-less Polar code [3], it is also possible to eliminate the extra CRC overhead. In the Appendix, there provides a specific encoding design using local CRCs and integrating a low-complexity rate-matching design [4] [5]. The corresponding performance will verify the practicality of subcode-wise Polar encoding and decoding, while there are many possible alternatives that can realize the benefits.

[image:]
Fig. 3: Adding local CRC subcode-wise for effective subcode SCL decoding

3. Performance Evaluation
In this section, the performance of the subcode-wise Polar encoding and decoding, as specified in the Appendix, will be verified. In particular, we consider a constant subcode encoder size of 1024 and SCL list size of 8 for subcode decoding. Also 1000 and 2000 info bits with various code rates, ranging from 1/5 to 8/9, are testified. Figs. 4 below shows the performance curves w.r.t. the Polar codes without local CRC overhead and with whole-codeblock SCL decoding. It can be checked that confined SNR loss can be achieved even with 16-subcode segmentation, verifying the practicality of subcode-wise Polar encoding and decoding.

[image:]
[image:]

Fig. 4: Comparison of subcode-wise SCL (solid curves) and whole-codeblock SCL (dot curves)

Observation 2: Performance loss of subcode-wise Polar encoding and decoding with local CRC overhead and sub-optimal decoding can be confined, i.e., up to 0.1 dB for code rate <=2/3, and up to 0.2 dB for code rate <= 8/9.
	With subcode-wise Polar decoding, the complexity for a Polar decoder to decode larger codeblocks can be kept compact, as TBCC Viterbi decoder with window-based decoding. On the other hand, with polarization gain across subcodes, Polar code can realize much superior performance to TBCC. In Fig. 5, there compare the performance of Polar code with list-8 and that of LTE TBCC, and more than 1.5 dB gain at 1% BLER can be realized.
[image:]
Fig. 5: Comparison of Polar code with subcode-wise SCL list-8 (solid curves) and TBCC (dash curves)

Observation 3: With compact decoder cost via subcode-wise SCL decoding, Polar code can further realize 1.5 dB advantage over LTE TBCC for codeblocks of 1000 info bits.

4. Summary
In this contribution, subcode-wise Polar encoding and decoding is introduced as an effective solution to resolve Polar code memory complexity. In particular, we have the following observations:

Observation 1: Subcode-wise SCL decoding can reduce Polar decoder memory complexity from O(L N) to O(L N/M + N)
•	For N = 16384 and M = 16, memory complexity is only 18.8% of ordinary SCL decoder.

Observation 2: Performance loss of subcode-wise Polar encoding and decoding with local CRC overhead and sub-optimal decoding can be confined, i.e., up to 0.1 dB for code rate <=2/3, and up to 0.2 dB for code rate <= 8/9.

Observation 3: With compact decoder cost via subcode-wise SCL decoding, Polar code can further realize 1.5 dB advantage over LTE TBCC for codeblocks of 1000 info bits.

With the above observations, the following proposal is suggested:
Proposal 1: Polar code with inherent good performance for control channels can be utilized for eMBB DL data channels as the most cost and performance effective complement to LDPC code for low data rate services.

References
[1] R1-164360 “Analysis of candidate code types for long block length”, Ericsson
[2] M.-C. Chiu and W.-D. Wu “Reduced-Complexity SCL Decoding of Multi-CRC-Aided Polar Codes”, on-line available: http://arxiv.org/abs/1609.08813
[3] R1-167215 “Channel coding for control channels”, Huawei, HiSilicon
[4] R1-167871 “Examination of NR coding candidates for low-rate applications”, MediaTek
[5] R1-167209 “Polar code design and rate matching”, Huawei, HiSilicon

Appendix – Subcode-wise Polar Encoding and Decoding Example
1. Encoding Design
Step 1: Construct the polar code based required information bit length K and code rate R.
The basic polar code was constructed according to [2]. The number of code bit N and the punctured coded bit P are determined by
· N = 2n, n = ceil(log2(K/R))
· P = N-K/R
· Determine the punctured bitmap of size N, where value 1 indicates puncture of the corresponding bit position and value 0 denotes no puncturing.
· Determine the frozen bitmap of size N, where value 1 indicates freezing the input value of the corresponding bit position to Polar encoder and value 0 means a variable input bit value that can used to carry one information bit. Note that punctured bits will also be fronzen bits.
Step 2: Partition the polar code of size-N into size-Ns subcodes.
The size of Ns can be adjusted according to targeted subcode decoder complexity. The number of subcodes is the determined by
· M = min(1,N/Ns)
Step 3: Decide the proper local CRC size within each subcode.
· Assume local CRC with size C was inserted in each subcode.
·
Determine the new frozen bitmap with number of information bit =
· Global CRC was inserted in last subcode as CRC-aided SCL decoder.
· Check if there are sufficient un-frozen bits for CRC insertion for each block.

	: number of un-frozen bits in subcode i in step 3

for i = 0,1,……,B-1 do

if // if there is no sufficient un-frozen bits for CRC

 // update the number of excess un-frozen bits
end
end
· Modify the frozen bitmap by checking if the CRC insertion is available in each block.

		: number of un-frozen bits in subcode i in step 1

	: number of additional un-frozen bits in subcode i in step 3

		: number of total un-frozen bits after CRC insertion

 		: number of local CRC bits in subcode i

for i = 0,1,……,B-1 do

if // no sufficient un-frozen bits for CRC bits

Set the all bits in subcode i as frozen bits

 no CRC was inserted in this subcode
			else

 // update the number of excess un-frozen bits

Set the bits in subcode i as frozen bits from lower index

 // update the number of un-frozen bits

if

 CRC was inserted in this subcode
else

 // No CRC was inserted in that last subcode contain un-frozen bits
end
 	end

 end
Step 4: Inert the CRC bits into un-frozen bits with lower index for each subcode
2. Decoding Design:
· For each subcode, the decoding can reuse the SCL decoder with a targeted list size L.
·
Do the CRC check at the end of i-th subcode during list decoding if.
· The subcode CRC can be used to decide the best information path passing the CRC.
· Perform SC decoding with the hard decision feedbacks from all subcodes with index <= i over the inner polarization structure and obtain the input to (i+1)-th subcode for SCL decoding.
· After the last subcode is decoded, utilize the global CRC to make the final data decision.
image3.png

image4.emf
1.00E-031.00E-021.00E-011.00E+00

-4.5-4-3.5-3-2.5-2-1.5-1-0.500.511.522.533.544.555.566.577.5

BLEREc_N0 (dB)

K=1000

CR_0.20 -REFCR_0.20 -8-SEGCR_0.33 -REFCR_0.33 -4-SEGCR_0.40 -REFCR_0.40 -4-SEGCR_0.50 -REFCR_0.50 -2-SEGCR_0.66 -REFCR_0.66 -2-SEGCR_0.75 -REFCR_0.75 -2-SEGCR_0.83 -REFCR_0.83 -2-SEGCR_0.89 -REFCR_0.89 -2-SEG

image5.emf
1.00E-031.00E-021.00E-011.00E+00

-4.5-4-3.5-3-2.5-2-1.5-1-0.500.511.522.533.544.555.566.577.5

BLEREc_N0 (dB)

K=2000

CR_0.20 -REFCR_0.20 -16-SEGCR_0.33 -REFCR_0.33 -8-SEGCR_0.40 -REFCR_0.40 -8-SEGCR_0.50 -REFCR_0.50 -4-SEGCR_0.66 -REFCR_0.66 -4-SEGCR_0.75 -REFCR_0.75 -4-SEGCR_0.83 -REFCR_0.83 -4-SEGCR_0.89 -REFCR_0.89 -4-SEG

image6.png

image7.wmf
1)

-

B

(

´

+

C

K

oleObject1.bin

image8.wmf

,

i

new

K

oleObject2.bin

image9.wmf
0

=

excess

cnt

oleObject3.bin

image10.wmf
)

1

(

,

+

<

C

K

i

new

oleObject4.bin

image11.wmf
C

cnt

cnt

excess

excess

+

=

oleObject5.bin

image12.wmf

i

K

oleObject6.bin

image13.wmf
i

addition

K

.

oleObject7.bin

image14.wmf

m

K

oleObject8.bin

image15.wmf
i

C

oleObject9.bin

image16.wmf
excess

cnt

cnt

=

oleObject10.bin

image17.wmf
0

=

k

cnt

oleObject11.bin

image18.wmf
(

)

excess

m

cnt

B

C

K

K

-

-

+

=

1

oleObject12.bin

image19.wmf

-

,

.

i

i

new

i

addition

K

K

K

=

oleObject13.bin

image20.wmf
)

1

(

,

+

<

C

K

i

new

oleObject14.bin

image21.wmf
i

new

excess

excess

K

cnt

cnt

,

-

=

oleObject15.bin

image22.wmf
0

=

i

C

oleObject16.bin

image23.wmf
)

,

min(

.

i

addition

excess

excess

excess

K

cnt

cnt

cnt

-

=

oleObject17.bin

image24.wmf
)

,

min(

.

i

addition

excess

K

cnt

oleObject18.bin

image25.wmf
)

,

min(

.

,

i

addition

excess

i

new

k

k

K

cnt

K

cnt

cnt

-

+

=

oleObject19.bin

image26.wmf
m

k

K

cnt

¹

oleObject20.bin

image27.wmf
C

=

i

C

oleObject21.bin

image28.wmf
0

=

i

C

oleObject22.bin

image29.wmf
0

C

¹

i

oleObject23.bin

image1.png

image2.png

