Page 1
3GPP TSG-RAN WG1 #86bis 	R1-1610141
10th – 14th October 2016
Lisbon, Portugal

[bookmark: Source]Agenda item:	8.1.3.1
Source: 	Qualcomm Incorporated
Title: 	Short block-length design
[bookmark: DocumentFor]Document for:	Discussion/Decision
Introduction
The purpose of this document is provide more detailed discussion on channel coding performance, computational and implementation complexity, and latency tradeoffs of TBCC and Polar codes in the short block-length regime. This is a continuation of the analysis first provided in [2][3][4][8], with further details to address both URLLC/mMTC where there is CRC-aided list decoding, and Control Channel where there is no CRC available for pruning candidates from a list decoder.
[bookmark: _GoBack]
Code Description

[bookmark: _Ref463016697]Figure 1. Transmit chain diagram.
 For URLLC/mMTC simulation setting, 16-bit-CRC is assumed.
For control channel simulation setting, no CRC is appended.
TBCC
To support native rate of 1/3, 1/6 and 1/12, we adopt the nested polynomial structure introduced in [5], which we restate here in Table 1 (same as Table 1 in [5]). The first three polynomials are used to get native rate 1/3, the first six polynomials are used to for rate-1/6 evaluation, and the first 12 polynomials are used for rate-1/12 evaluation. Puncturing is done using LTE’s row-column interleaver and cyclic buffer design. The trellis construction in the decoder follows standard list Viterbi algorithm as illustrated in Figure 2. Note that each state keeps L strongest survivors (L*64 survivors per-stage), where L denotes the list size.
[bookmark: _Ref450923204]Table 1 Nested polynomials for low rate TBCC
	n
	Polynomial
	df
	

	1
	133
	-
	-

	2
	171
	10
	11

	3
	165
	15
	3

	4
	117
	20
	2

	5
	135
	25
	1

	6
	157
	30
	1

	7
	135
	36
	4

	8
	123
	40
	1

	9
	173
	46
	3

	10
	135
	51
	2

	11
	171
	56
	2

	12
	135
	61
	1

	13
	173
	66
	1

	14
	135
	72
	4

	15
	145
	76
	1

	16
	157
	82
	3

	17
	135
	87
	2

	18
	117
	92
	2

	19
	135
	97
	1

	20
	157
	102
	1

State0
State1
State2
State3
Stage n
Stage n+1
ListSize=6

[bookmark: _Ref447274757]Figure 2 List Viterbi Algorithm

Polar Codes
In RAN1#85, the code construction of Polar codes is discussed based on Gaussian Approximation (GA) with given SNR and the corresponding performance was evaluated [6][7]. For the following sections, we consider both Polar codes with CRC to assist decoding, as well as Polar codes without CRC attachment but still optimized for minimum distance. More construction details are provided in the next sections.
The construction SNRs listed in Table 2 are used to obtain the performance in the next section.
Table 2 The construction SNR (dB) in GA for URLCC/mMTC
	Information bits
	20
	40
	200
	600
	1000

	Code rate
	1/12
	-5.0
	-5.0
	-5.0
	-5.0
	-5.0

	
	1/6
	-3.0
	-3.0
	-3.0
	-3.0
	-3.0

	
	1/3
	0
	0
	0
	0
	0

Performance without CRC-List Decoder (Control channel)
Simulation Assumptions
In this section, for the control channel evaluation, we consider constructions and decoding algorithms which do not append a separate CRC used for pruning candidates from list decoders. For small payloads, such constructions can reduce overhead and lead to improved performance. This is particularly useful for smaller control channel payloads. For this case, we polar codes constructed according the SNRs listed below.
The BLER comparison of Polar and TBCC shown here conform to the simulation assumptions list in Table 3, where the parameters covered in this document is highlighted in bold text.
Table 3 Control channel simulation assumptions
	Channel
	AWGN

	Modulation
	QPSK

	Coding Scheme
	Repetition
	Simplex
	TBCC
	Turbo
	LDPC
	Reed-Muller
	Polar

	Code rate (for evaluation purposes)
	1/24*, 1/12, 1/6, 1/3, 1/2, 2/3

	Decoding algorithm**
	ML
	ML
	List-Viterbi
	Scaled max log MAP
	Adjusted
min-sum
	FHT
	SC list

	Info. block length (bits w/o CRC) (for evaluation purposes) ***
	1, 2, 4, 8, 16, 32, 48, 64, 80, 120, 200

	* Code rate 1/24 is valid for info block length of 1-2 bits
** Other variants of agreed algorithms can be used for encoding and decoding (Complexity details should be illustrated)
*** Each of these info. block lengths shall be evaluated at at least one of the code rates. Other info. block lengths and code rates are not precluded. Similar info. and encoded block lengths should be used for the evaluation. Total coded bits = info. Block length/code rate. Note: these info. block length and code rate are only for initial performance evaluations. They are not interpreted as design targets or assumptions for complexity analysis.
Companies are encouraged to provide information on complexity of their decoders, and on decoding latency

Simulation Results
Below we plotted the 10-3 BLER achieving SNR as a function of the information block size in Figure 3. The construction SNRs are -3dB, 1dB, 2dB and 4dB for rate of 1/6, 1/3, ½, and 2/3, respectively.
Observation 1:
Under control channel simulation assumption with no CRC:
· At K=16,32,48,64,80, across all code rate (2/3,1/2,1/3,1/6)
· TBCC(L=1) outperforms (or performs similarly as) Polar(L=32)
· At K=120, 200
· TBCC(L=1) performs similarly as Polar(L=32) at rate-2/3
· Polar(L=32) outperforms TBCC(L=1) at rate-1/2, rate-1/3 and rate-1/6

[image:]
[bookmark: _Ref463000073]Figure 3 TBCC/Polar performance comparison (1e-3 PER achieving SNR) (no CRC)

Performance with CRC-List Decoder (URLLC/mMTC)
Simulation Assumptions
List decoding improves the error-correction performance of polar codes. With a sufficiently large list size, the decoder can achieve the maximum likelihood (ML) performance of polar codes. Using a cyclic-redundancy check as an outer code, results in a concatenated polar-CRC code with higher minimum Hamming distance than the polar code alone, which, in conjunction with list decoding, leads to improved error-correction performance.
In this section, we show the BLER and false-positive rate comparison of Polar and TBCC/CC conforming to the simulation assumptions list in Table 4, where the parameters covered in this document is highlighted in bold text.
 The complexity and latency analysis will be provided in the next section.
Table 4 URLLC and mMTC simulation assumptions
	Channel
	AWGN

	Modulation
	QPSK, 16 QAM***

	Coding Scheme
	CC & TBCC
	LDPC
	Polar
	Turbo

	Code rate
	 1/12, 1/6, 1/3

	Decoding algorithm*
	List-X Viterbi
	min-sum
	List-Y
	Max-log-MAP

	Info. block length** (bits w/o CRC)
	20, 40, 200, 600, 1000

	CRC length
	16

	· * These algorithms are starting points for further study. Other variants of agreed algorithms can be used for encoding and decoding (Complexity details should be illustrated)
· ** At least these info. block length and code rate shall be evaluated. Other info. block lengths and code rates are not precluded. Similar info and encoded block lengths should be used for the evaluation. Total coded bits = info. Block length/code rate. Note: these info. block length and code rate are only for initial performance evaluations. They are not interpreted as design targets or assumptions for complexity analysis.
· ***16 QAM results are not provided here.

Simulation Results
In Figure 4 to Figure 10, we plot the 10-3 BLER achieving SNR, as a function of the list size. Each figure shows the results under a single block length. As mentioned in the previous section, we adopt the nested polynomial structure as introduced in [5] to construct rate 1/3, 1/6 and 1/12 convolutional code. From the figures, the following observations can be made.
Observation 2:
Under URLLC/mMTC simulation assumption with 16-bit CRC:
· At K=20 and K=40, across all code rate (1/3, 1/6, 1/12)
· TBCC performs similarly as Polar when ListSize>16.
· TBCC outperfoms Polar when ListSize<16
· At K=100
· TBCC performs similarly as Polar at code rate 1/3
· Polar outperforms TBCC by <0.5dB at code rate 1/6
· Polar outperforms TBCC by <1dB at code rate 1/12
· At K=200,600,1000
· Polar outperfoms TBCC

[image:]
[bookmark: _Ref463016720]Figure 4. Achievable SNR versus Information Blocklength

[image:]
[bookmark: _Ref457807570]Figure 5 TBCC/CC/Polar BLER at K=20
[image:]
[bookmark: _Ref458725602]Figure 6 TBCC/CC/Polar BLER at K=40
[image:]
Figure 7 TBCC/CC/Polar BLER at K=100
[image:]
Figure 8 TBCC/CC/Polar BLER at K=200
[image:]
Figure 9 TBCC/CC/Polar BLER at K=600
[image:]
[bookmark: _Ref457807580]Figure 10 TBCC/CC/Polar BLER at K=1000

In the next set of figures, we show the false-positive rate of Polar and TBCC as a function of the list size. The false-positive rates are obtained by injecting the decoder with the following two types of LLR inputs and counting the number of times the decoder claims a CRC-passing output.
· Gaussian noise: This input emulates the case when no codeword is transmitted. (null hypothesis)
· Noise-free Random BPSK: This input emulates the case when some codeword is transmitted but it is intended for a different target receiver. (random is as a result of scrambling)

In the case when the 16-bit CRC is not used to assist decoding, the false positive rate with either of the above two types of random LLR inputs is . For a random list decoder where L randomly chosen codewords are checked against the 16-bit CRC, it’s false positive rate can be expressed as

In Figure 11 and Figure 12, we plot the false positive rate of TBCC and Polar with a 95% confidence interval under different K=20 and K=40, and the following observations are made
Observation 3:
· TBCC and Polar have similar false positive rate
· Radom Gaussian LLR and Random BPSK LLR yield similar false positive rate
· The false positive rate of both TBCC and Polar match with the equation

[image:]
[bookmark: _Ref457822473]Figure 11 False-positive rate of TBCC/Polar at K=20
[image:]
[bookmark: _Ref458726057][bookmark: _Ref458778395]Figure 12 False-positive rate of TBCC/Polar at K=40

Implementation considerations
In this section, we compare TBCC and Polar from three different angles: (1) computational complexity, which is closely related to the decoder power consumption (2) implementation complexity, which reflects the chip area requirement, and (3) decoding latency, which impacts the UE processing timeline.
Computational complexity
TBCC decoder
	TBCC Decoder Component
	Complexity

	Branch metric calculation
	

	Trellis development for state determination
	

	Trellis development for list decoding
	

	Handling of the final stage and backtrace
	

	Parameters:
· Number of info bits (containing CRC): K
· Number of coded bits per info bit: C
· Number of states: S
· Number of input states per state: (Radix)
· List Size: L

Polar SC-List Decoder
	Polar SC-List Decoder Component
	Complexity

	Single Parity Check
	abs(): sign(): min():

	Repetition
	add()/sub():

	Path Metric Calculation
	abs(): add():

	Sorting
	comp():

	Parameters:
· Number of info bits (containing CRC): K
· Number of coded bits: N
· List Size: L

Computational complexity comparison
In this subsection, we provide a complexity study for the K=40, N=120 scenario, which best represents control channel use case. In Figure 13, we plot the computation complexity of TBCC and Polar as a function of the list size, from which the following observation can be made
Observation 4:
· Under the same list size, Polar SC-List decoder has less computation complexity compared with TBCC. The ratio of TBCC computation complexity over that of Polar SC-List is a decreasing function of the list size: at ListSize=1, the ratio is ~7.5; at ListSize=16, the ratio is ~2.
[image:]
[bookmark: _Ref458634762]Figure 13 computational complexity of TBCC and Polar SC-List as a function of list size

In Figure 14, we incorporate the BLER performance result from Figure 6 and plot the 10-3 BLER achieving SNR as a function of calculation complexity, with the corresponding list size marked in the figure. The figure shows that
Observation 5:
· TBCC(L=16) and Polar(L=32) have the similar complexity count and similar 10-3 BLER achieving SNR, whereas false positive rate of Polar(L=32) is twice that of TBCC(L=16).

[image:]
[bookmark: _Ref458725517]Figure 14 Computational complexity vs Performance

Implementation complexity
TBCC Viterbi Decoder Implementation Complexity
To reduce decoding latency, we use a radix-4 Viterbi decoder, where two consecutive trellis steps are merged and processed simultaneously. In this section, we only discuss the implementation complexity of an L=1 decoder. The implemented decoder can be used to perform the state-determination pass in addition to the Viterbi decoding.
Branch Metrics
Each of the radix-4 branch metrics is the sum of two radix-2 branch metrics:

 There are radix-2 branch metrics in the merged radix-4 trellis stage, each of which is calculated according to

 , so multiplying by it can only change the sign of the other operand and can be implemented using a subtractor. Therefore, a single radix-2 branch metric calculator requires three subtractors and two adder.
Calculating the radix-4 branch metrics requires adders and calculating the component radix-2 branch metrics requires adders for a total of adders.
State Metrics (Forward Recursion)
The state metric, , for an even-indexed trellis stage, , which corresponds to two bits and , is calculated using an add-compare-select (ACS) unit:

The ACS unit comprises four adders and three maximum value calculations (comparators). To prevent numerical saturation of the state metrics, a constant offset is subtracted from all metrics in a trellis stage when any of the metric exceeds a threshold. The total implementation complexity of the ACS unit and the offsets is adders and comparators.
The backtracking step is excluded from the complexity logic implementation analysis since it only comprises look-ups from memory. It will be included in the memory complexity analysis.
Memory Requirements
The TBCC requires four different memories to be implemented. The first is the input LLR memory, which stores two sets of N channel LLRs of Qc bits each. Double buffering the input LLRs enables the decoder to decode a codeword while receiving another. The state-metric memory stores metrics of Qi bits each. The survivor memory stores M-bit indices.
To facilitate backtracking, the two input bits associated with the winning branch at each state are stored for the entire trellis, requiring bits.
The total memory (in bits) is

Polar List Decoder Implementation Complexity
A polar code of length N is the concatenation of two polar sub-codes of length N/2. This concatenation process is applied recursively until sub-codes of length 1 are reached. These length-1 sub-codes either carry an information bit, or a frozen bit. Successive-cancellation (SC) decoding calculates the input to each sub-code recursively until length-1 sub-codes are reached. At which point, the single bit is estimated to be 0 if it is frozen, or using the sign of the LLR (threshold detection) if it is an information bit. Recursively decoding every sub-code leads to SC decoders having high latency.
Simplified SC (SSC)-based decoding reduces latency by directly decoding sub-codes when implementation and computational complexity constraints permit. Examples of these sub-decoders are:
· Decoders for rate-0 sub-codes whose output is known a priori to be the all-zero vector.
· Decoders for rate-1 sub-codes whose output is the element-wise hard-decision decoding of the input LLRs.
· Exhaustive-search maximum-likelihood (ML) decoders, the maximum length and dimension of the sub-codes on which they operate is limited by available computational elements.

List decoding can also benefit from SSC latency reduction techniques. One major difference between SC-List and SSC-List decoding is that, in the latter, directly-decoded sub-codes can generate multiple candidates per list item. Whereas SC-List decoding, because it arrives at single-bit sub-codes, only generates two candidates per list item. We base the proposed polar decoder implementation on [9].
Memory Requirements
The decoder requires 2NQc bits to store two sets of channel LLRs. In addition, each list element stores LLRs for a total of LNQi bits of internal LLR memory.
Similarly, the list decoder stores a 2N-bit estimated codeword and NL internal bit estimates.
While the list decoder also stores L path metrics (of Qm bits each), the size of this memory is negligible compared to the rest and we ignore it in this analysis. Therefore, the total memory required by the list decoder is approximately 2N(Qc + 1) + N*L(Qi + 1) bits.
In [10], recalculating LLR values corresponding to the larger stages in the decoder instead of storing them was proposed as method to reduce the decoder memory requirements. The output LLRS for stages , , , and are not stored, reducing the internal LLR memory to LLRs per list element.
The total memory for the polar list decoder becomes
 bits. The impact of the LLR recalculation on implementation complexity is discussed in a later section.
Memory width is LLRs, where P is the level of parallelism and affects latency as will be discussed later.
To maintain clock frequency, pipeline registers are inserted at the output of the stage recalculation. This adds LLR registers to the memory for a total of
 bits.

F and G blocks:
The decoder implements L*P/2 f and g blocks. This number is limited by the available memory width per list item (P).
Each f block performs and consists of two 2s-complement-to-sign-magnitude converters, a minimum-value calculator, and one sign-magnitude-to-2s-complement converter. The converters can be implemented using one adder each and the minimum value calculator can be implemented using a comparator.
Each g block performs or depending on a combination of estimated bits and consists of an adder and a subtractor.
The total complexity of the f and g logic is L*P/2 * (3 + 2) = 5/2LP adders and L*P/2 comparators.
When the LLR recalculation method is used to reduce memory [10], an additional f and g blocks are required, increasing the total complexity to adders and comparators.
Sub-code Decoders
Rate-1 decoders need to find both the first and second minimum magnitudes (min-1 and min-2, respectively). The required resources to implement these operations are P absolute value calculators (subtractors) and 2P – 3 comparators per list item [11].
The ML decoder requires adders and 4L Min-1 and Min-2 calculators with 8 inputs that require 4L*(2*8 – 3) = 52L comparators.
The repetition code decoder requires P adders per list item to accumulate its input that is segmented into blocks of P LLRs.
Path-metric Sorting
The list of path metrics is sorted using a bitonic sorting network with 2L inputs. The basic building block in a sorting network is a 2-input sorter composed of a comparator and two 2x1 multiplexers. A sorting network with M inputs has 2-input sorters, leading to an implementation complexity of comparators.
Due to the presence of ML decoders, the decoder requires L + 3 sorting networks that have 2L inputs Since the rate-1 decoder generates 4 candidates for each path, it requires a 4L-input sorting network. Therefore, the decoder requires L+2 2L-input and one 4L-input sorters. The total number of comparators required is comparators.
Summary
	
	TBCC (L=1)
	Polar

	Adders
	
	

	Comparators
	
	

	Memory (bits)
	
	

Example
To numerically compare the two decoders, we use the following parameters:
· Code: N = 120, K = 56 (40 information bits + 16 CRC bits).
· TBCC: M = 6, Qc = 6, Qi = 10.
· Polar: P = 32, Qc = 6, Qi = 7.
	
	TBCC
	Polar (L = 4)
	Polar (L = 8)

	Adders
	1,856
	8,152
	16,304

	Comparators
	192
	796
	2,184

	Memory (bits)
	6,048
	2,816
	3,952

Observation 6:
· Based on the number of computational resources and memory requirements, we expect the TBCC decoder to have smaller implementation area than a polar list decoder with comparable error-correction performance and the same code parameters.
Latency
TBCC decoding latency
In the radix-4 decoder, the state-determination pass requires K/2 clock cycles. Similarly, the forward recursion and the backtracking require K/2 clock cycles each. The total latency will be 3K/2 cycles.
Polar SC-List Decoder Latency
Using a sorting network, one can sort 2L path metrics in cycles assuming each stage in the sorting network is performed in a cycle. A less conservative estimate assumes that 4 stages can be performed in a clock cycle, reducing the sorting latency to cycles. Since sorting occurs only after an information bit is estimated, the per-codeword latency due to sorting in SC-list decoding is

cycles. Therefore, the total latency of an SC-list decoder is
clock cycles.
SSC-list decoding has lower latency, but it is dependent on the location of frozen bits (the code construction parameters) in addition to the code length and rate. The latency of an SSC-list in clock cycles is the sum of the latency of all sub-codes in the pruned code graph:

where is the length of sub-code i, is the number of cycles required to calculate the sub-decoder’s input, and is the latency due to sorting and pipelining in the sub-code decoder.
 depends on the type of sub-code:
· It is 0 if the sub-code will not be directly decoder, i.e. if the decoder will perform an F or a G function.
· It is the latency of a 2L-input sorting network for rate-1 sub-codes.
· It varies based on sub-code length and rate for ML decoding.

For N= 120, K = 56, P = 32, and a code constructed for the AWGN with BPSK modulation and noise variance , the latency (in clock cycles) is
	
	SC-List (L = 4)
	SC-List (L=8)
	SSC-List (L = 4)
	SSC-List (L = 8)

	Latency (cycles)
	359
	415
	75
	83

Summary
	
	TBCC
	Polar SSC-List

	Latency (cycles)
	
	

Example
To numerically compare the two decoders, we use the following parameters:
· Code: N = 120, K = 56 (40 information bits + 16 CRC bits).
· TBCC: M = 6.
· Polar: P = 32.
	
	TBCC
	Polar (L = 4)
	Polar (L = 8)

	Latency (cycles)
	84
	75
	83

Observation 7:
· TBCC (L=1) and the polar SSC-List decoder (L = 4, L = 8) have comparable latency for the (120, 40+16) code example.

Conclusions
Observation 1:
Under control channel simulation assumption with no CRC:
· At K=16,32,48,64,80, across all code rate (2/3,1/2,1/3,1/6)
· TBCC(L=1) outperforms (or performs similarly as) Polar(L=32)
· At K=120, 200
· TBCC(L=1) performs similarly as Polar(L=32) at rate-2/3
· Polar(L=32) outperforms TBCC(L=1) at rate-1/2, rate-1/3 and rate-1/6

Observation 2:
Under URLLC/mMTC simulation assumption with 16-bit CRC:
· At K=20 and K=40, across all code rate (1/3, 1/6, 1/12)
· TBCC performs similarly as Polar when ListSize>16.
· TBCC outperfoms Polar when ListSize<16
· At K=100
· TBCC performs similarly as Polar at code rate 1/3
· Polar outperforms TBCC by <0.5dB at code rate 1/6
· Polar outperforms TBCC by <1dB at code rate 1/12
· At K=200,600,1000
· Polar outperfoms TBCC

Observation 3:
· With the same list size, TBCC and Polar have similar false positive rate
· Radom Gaussian LLR and Random BPSK LLR yield similar false positive rate
· The false positive rate of both TBCC and Polar match with the equation

Observation 4: For the scenario of K=40 N=120, which best represents control channel use-case,
· Under the same list size, Polar SC-List decoder has less computational complexity compared with TBCC. The ratio of TBCC computational complexity over that of Polar SC-List is a decreasing function of the list size: at ListSize=1, the ratio is ~7.5; at ListSize=16, the ratio is ~2.

Observation 5: For the scenario of K=40 N=120, which best represents control channel use-case,
· TBCC(L=16) and Polar(L=32) have the similar computational complexity count and similar 10-3 BLER achieving SNR, whereas false positive rate of Polar(L=32) is twice that of TBCC(L=16).

Observation 6:
· Based on the number of computational resources and memory requirements, we expect the TBCC decoder to have smaller implementation area than a polar list decoder with comparable error-correction performance and the same code parameters.

Observation 7:
· TBCC (L=1) and the polar SSC-List decoder (L = 4, L = 8) have comparable latency for the (120, 40+16) code example.

References
[1] [bookmark: _Ref430766234]RP-160671, New SID Proposal: Study on New Radio Access Technology
[2] [bookmark: _Ref449619335][bookmark: _Ref450705290]“TBCC design overview”, R1-164701, Qualcomm Incorporated, RAN1#85, Nanjing, China.
[3] [bookmark: _Ref456793626]“TBCC – Performance Evaluation”, R1-164702, Qualcomm Incorporated, RAN1#85, Nanjing, China.
[4] [bookmark: _Ref456793804]“Channel coding evaluation assumptions - performance and complexity”, R1-164704, Qualcomm Incorporated, RAN1#85, Nanjing, China.
[5] “Performance Evaluation of TBCC and Polar Codes”, Ericsson, RAN1#85, Nanjing, China.
[6] “Polar code design overview”, R1-164699, Qualcomm Incorporated, RAN1#85, Nanjing, China.
[7] “Polar – Performance Evaluation”, R1-164700, Qualcomm Incorporated, RAN1#85, Nanjing, China.
[8] [bookmark: _Ref462996666]“Short block-length design”, R1-166373, Qualcomm Incorporated, RAN1#86, Gothenburg, Sweden.
[9] [bookmark: _Ref463003813]“A High Throughput List Decoder Architecture for Polar Codes”, Lin et al, T-VLSI, Vol 24, No. 6, Jun. 2016.
[10] [bookmark: _Ref463003967]“Computational and implementation complexity of channel coding schemes,” R1-167213, Huawei, HiSIlicon, RAN1 86, Gothenburg, Sweden.
[11] [bookmark: _Ref463004025]“Algorithms of Finding the First Two Minimum Values and Their Hardware Implementation,” Wei et al, IEEE T-CAS-I, Vol 55, No. 11, Dec. 2008.

1/18
image1.emf
Append X-

bit CRC

TBCC or CC

or Polar

QPSK

K bits N bits (N=3xK, 6xK, or 12xK)

Rate

match

oleObject1.bin
Append X-bit CRC

TBCC or CC or Polar

QPSK

Rate match

K bits

N bits (N=3xK, 6xK, or 12xK)

image2.emf
16 32 48 64 80 120 200

-3

-2

-1

0

1

2

3

4

5

6

7

Information Block Size K

1e-3 PER achieving SNR (No CRC)

Es/N0 (dB)

TBCC R=2/3 (L=1)

TBCC R=1/2 (L=1)

TBCC R=1/3 (L=1)

TBCC R=1/6 (L=1)

Polar R=2/3 (L=32)

Polar R=1/2 (L=32)

Polar R=1/3 (L=32)

Polar R=1/6 (L=32)

image3.emf
20 40 60 80 100 120 140 160 180 200

-8

-6

-4

-2

0

2

4

Information Block Size K

Es/N0 (dB)

1e-3 PER Achieving SNR (CRC-List)

TBCC R=1/3 (L=32)

TBCC R=1/6 (L=32)

TBCC R=1/12 (L=32)

Polar R=1/3 (L=32)

Polar R=1/6 (L=32)

Polar R=1/12 (L=32)

image4.emf
0 1 2 3 4 5 6 7 8

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

log2(ListSize)

1e-3 PER achieving SNR

 1e-3 PER achieving SNR (K=20)

K=20 Rate=1/3 TBCC

K=20 Rate=1/6 TBCC

K=20 Rate=1/12 TBCC

K=20 Rate=1/3 Polar

K=20 Rate=1/6 Polar

K=20 Rate=1/12 Polar

K=20 Rate=1/3 CC

K=20 Rate=1/6 CC

K=20 Rate=1/12 CC

image5.emf
0 1 2 3 4 5 6 7 8

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

log2(ListSize)

1e-3 PER achieving SNR

1e-3 PER achieving SNR (K=40)

K=40 Rate=1/3 TBCC

K=40 Rate=1/6 TBCC

K=40 Rate=1/12 TBCC

K=40 Rate=1/3 Polar

K=40 Rate=1/6 Polar

K=40 Rate=1/12 Polar

K=40 Rate=1/3 CC

K=40 Rate=1/6 CC

K=40 Rate=1/12 CC

image6.emf
0 1 2 3 4 5 6 7 8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

log2(ListSize)

1e-3 PER achieving SNR

1e-3 PER achieving SNR (K=100)

K=100 Rate=1/3 TBCC

K=100 Rate=1/6 TBCC

K=100 Rate=1/12 TBCC

K=100 Rate=1/3 Polar

K=100 Rate=1/6 Polar

K=100 Rate=1/12 Polar

K=100 Rate=1/3 CC

K=100 Rate=1/6 CC

K=100 Rate=1/12 CC

image7.emf
0 1 2 3 4 5 6 7 8

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

log2(ListSize)

1e-3 PER achieving SNR

1e-3 PER achieving SNR (K=200)

K=200 Rate=1/3 TBCC

K=200 Rate=1/6 TBCC

K=200 Rate=1/12 TBCC

K=200 Rate=1/3 Polar

K=200 Rate=1/6 Polar

K=200 Rate=1/12 Polar

K=200 Rate=1/3 CC

K=200 Rate=1/6 CC

K=200 Rate=1/12 CC

image8.emf
0 1 2 3 4 5 6 7 8

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

log2(ListSize)

1e-3 PER achieving SNR

1e-3 PER achieving SNR (K=600)

K=600 Rate=1/3 TBCC

K=600 Rate=1/6 TBCC

K=600 Rate=1/12 TBCC

K=600 Rate=1/3 Polar

K=600 Rate=1/6 Polar

K=600 Rate=1/12 Polar

K=600 Rate=1/3 CC

K=600 Rate=1/6 CC

K=600 Rate=1/12 CC

image9.emf
0 1 2 3 4 5 6 7 8

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

log2(ListSize)

1e-3 PER achieving SNR

1e-3 PER achieving SNR (K=1000)

K=1000 Rate=1/3 TBCC

K=1000 Rate=1/6 TBCC

K=1000 Rate=1/12 TBCC

K=1000 Rate=1/3 Polar

K=1000 Rate=1/6 Polar

K=1000 Rate=1/12 Polar

K=1000 Rate=1/3 CC

K=1000 Rate=1/6 CC

K=1000 Rate=1/12 CC

image10.emf
-1 0 1 2 3 4 5 6 7

-17

-16

-15

-14

-13

-12

-11

-10

-9

log2(False Positive Rate)

log2(ListSize)

K 20 N 60

Polar PF with Gaussian input

Polar PF with random-bpsk input

TBCC PF with Gaussian input

TBCC PF with random-bpsk input

image11.emf
-1 0 1 2 3 4 5 6 7

-17

-16

-15

-14

-13

-12

-11

-10

-9

log2(False Positive Rate)

log2(ListSize)

K 40 N 120

Polar PF with Gaussian input

Polar PF with random-bpsk input

TBCC PF with Gaussian input

TBCC PF with random-bpsk input

image12.emf
0 1 2 3 4 5 6 7 8

10

1

10

2

10

3

10

4

10

5

log

2

(ListSize)

TBCC: K+CRC16=56 NativeRate1/3 Radix-2 || Polar: K+CRC16=56 N=128

Polar ListSC CompComplexity (per info-bit)

TBCC CompComplexity (per info-bit)

0 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

log

2

(ListSize)

ComputationComplexityOfTBCC / ComputationComplexityOfPolar

TBCC: K+CRC16=56 NativeRate1/3 Radix-2 || Polar: K+CRC16=56 N=128

image13.emf
10

1

10

2

10

3

10

4

10

5

1

1.5

2

2.5

3

3.5

4

4.5

calculation complexity count

1e-3 BLER achieving SNR

TBCC: K+CRC16=56 NativeRate1/3 Radix-2 || Polar: K+CRC16=56 N=128

1e-3 BLER achieving SNR

PolarSCLD CalcComplexity (per info-bit)

TBCC CalcComplexity (per info-bit)

L=1

L=4

L=16

L=64

L=256

L=2

L=1

L=4

L=8

L=16

L=32

L=64

L=128

L=256

