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Introduction
LDPC codes have been proposed as a coding scheme for NR. The details of the proposed LDPC coding design can be found in [1]. LDPC codes are generally decoded with the message passing decoder based on a message-passing algorithm [10]. Message passing decoders operate by passing messages only the edges of bipartite graphs with variable nodes on one side and check nodes on the other.  The messages are processed and updated at the nodes. The messages generally represent (approximate) extrinsic log-likelihood ratios (LLR) of the bit associated to the edge that carries the message.  The message passing and updating proceeds in an iterative manner, typically until convergence to a codeword is detected or a time-out occurs. The processing rule at the variable node side typically amounts to the summation of the incoming LLRs along the edges. At the check node side, the processing rule is twofold: the sign of the outgoing message is simply the product of the incoming signs because of the parity-check sum operation; the magnitude of the outgoing LLR is determined by a more complicated operation. One of the most powerful message passing decoders, one that is optimal asymptotically in large block length, is the sum-product (SP) algorithm.  In the case of the SP algorithm the outgoing LLR magnitude is true LLR magnitude assuming the incoming LLRs are correct and independent. It can be computed by first transforming the magnitude of the incoming LLRs along each edge by applying the function log(coth(|LLR|/2), for each edge summing the result over all the other edges and then again applying the function log(coth(|.|/2)) to the sum. If  represent the magnitudes of the incoming LLR then the outgoing message magnitude of edge number  is computed by using all the incoming messages except the incoming message on the th edge.
Although the above mentioned SP decoder performs well, it could poses challenges in efficient implementation. One challenge is the complexity of the transform operation, but a more basic challenge concerns memory requirements. More precisely, in many decoder architectures it is necessary to store the values of outgoing messages from the check node. Full implementation of the SP decoder would therefore involve having memory storage for each edge connected to a check node. This could result in a large storage requirement for the decoder which could be undesirable. Since the area of hardware LDPC decoders are typically dominated by memory requirements [6][7][8], it is desirable to keep the required memory low. For NR the requirements of large block lengths and low code rates virtually ensures that the memory component of the decoder will dominant. 
A popular simplification of the SP decoder is another message-passing decoder known as the Min-Sum (MS) decoder. In this decoder the variable node processing rules remain the same as SP. At the check node side, however, the outgoing message magnitude is computed in a simpler way. On a given edge, the outgoing LLR magnitude is taken to be the minimum of the magnitudes of the incoming LLRs on the other edges.  As a consequence, the outgoing LLR magnitudes take on at most two distinct values. Let  represent the magnitude of the incoming LLRs along a check node of degree d.  Assume that ,  are the smallest and the second smallest incoming magnitude LLR. Then the MS decoder has only two the outgoing message magnitudes  and . Along the edge that carries the smallest incoming magnitude, , the MS decoder sends an LLR with magnitude given by the second smallest incoming LLR,  and along the remaining edges, it sends the smallest incoming magnitude LLR, . As a consequence, the memory storage requirement for the outgoing check node messages can be reduced, requiring only the two magnitudes and an indicator of the edge that carried the smallest incoming magnitude.. The MS decoder closely related the Max-log-map decoder used for low complexity decoding of Turbo codes. 
It has been, however, noted several times in past works [2][3][4] that the MS decoder suffers from performance loss when compared to the SP decoder. This degradation varies with blocklengths and with rates and could be as small as a few tenths of a dB for small blocklengths to a dB or more at large blocklengths. The degradation of the MS decoder is particularly stark at lower rates such as ½, 1/3 and 1/5, an important rate regime for NR. The MS decoding performance suffers primarily because it overestimates the outgoing LLR magnitudes relative to SP, and because of the two magnitude property. To alleviate the overestimation of magnitudes the MS decoder is often modified to include an offset or a normalization value that is applied to the outgoing messages [2][3]. I.e., the outgoing message magnitude is first computed using the MS rules as mentioned above and then either a small offset (OMS) is removed from the outgoing message magnitude or the outgoing magnitude is scaled (NMS) to bring them closer to the true SP values. Even though the performance of OMS and NMS improves over MS, at lower rates it could still be around 0.4 to 0.5 dB away from the SP decoder. 
In this contribution we propose to use a decoder which has the same storage complexity of the MS decoder but has the performance close to the SP decoder for all rates and blocklengths. 
Reduced Complexity LDPC Decoding
Adjusted Min-Sum Decoder
At the variable node side for both the SP and MS decoder we have the following rule. Let  represent the incoming LLRs at a variable node, then the outgoing LLR along an edge is simply the sum of all the incoming LLRs ignoring the LLR along the edge under consideration (message-passing principle).

At the check node side, for the SP decoder the outgoing LLR magnitude is computed as follows:

In the above summation the incoming LLR magnitude along the edge under consideration is ignored. The sign of the LLR is simply the product of the signs of the incoming LLRs on all except the edge under consideration.
For the MS decoder the variable node rule remains the same. At the check node side instead of the above SP equation, the magnitude of the outgoing message is given by, 

Where the minimum is over all the incoming edges except the one along the edge under consideration. Assume that the LLRs are ordered such that  is the LLR with minimum incoming magnitude LLR and the  is the second minimum incoming magnitude LLR. Then, 

And 

As mentioned before, the main reason that the MS decoder suffers from performance loss is because the outgoing LLR magnitude are more “optimistic” than the SP outgoing LLR magnitude. Let us explain this more precisely. Consider the high SNR transmission case. In this situation, the LLRs are typically going to be of large magnitude. As a result, the outgoing message magnitude of the SP decoder is approximated well by the MS decoder outgoing messages. Indeed, if the LLR magnitude is large than the function log(coth(|LLR|/2)) is close to 0. Hence the MS decoder is closer to SP at high SNR. Although, it has been observed that the difference from the SP decoder could still be around three or more tenths of a dB. At lower SNR values, which is typically the case when the rate is low, the log(coth(|LLR|/2)) is large in magnitude. Hence, neglecting those terms, as is done in the MS decoder, could result in large performance degradation. Indeed, at rates such as 1/5, a difference close to a dB can be observed with respect to the SP decoder.

The work [5] describes a modified version of the MS decoder. The first point to note is that the decoder described in [5] has the same storage or memory requirement as the MS decoder, i.e., it also requires to store only two outgoing messages per check node. Secondly, the decoder computes the two outgoing message magnitudes as follows. Suppose again that the incoming LLR magnitudes are given by , with  being the minimum incoming magnitude LLR. Then, along the minimum incoming magnitude LLR, , the message sent is the one computed by the SP rule. And along the rest of the edges the message obtained by applying the SP rule to all the incoming messages, . Note the difference to the SP decoder is that along any edge , the outgoing message is computed using all except one message magnitude (incoming along the edge ) in the set  . 
It is also shown in [5] that the computation of the two outgoing message magnitudes per check node, as described above, using the SP rules can be done efficiently by approximating well the log(coth(||/2)) function and using constant value small look-up tables. All this adds negligible complexity to the decoder. Thus, in [5] it is shown that this modified version of the MS decoder has performance very close to the full SP decoder but with the complexity of the MS decoder. One way to understand this decoder is to imagine that the traditional offset-Min-Sum decoder is used with an offset which depends on all the parameters such as rate, check node degree etc. The modified version of the MS decoder in [5] captures this dynamic variation in the offset, depending on the parameters, by not optimizing the offset values but using the messages which are inherently optimized by the SP decoder. 
Layered Decoder
LDPC decoding also involves the schedule of decoding. Traditionally the flooding schedule is used where all check nodes are updated in parallel first and then all the variable nodes. The layered schedule has been proposed [9] which uses allows updated information to be used more quickly than the flooding decoder thus speeding up the decoding. In the performance results shown below we use the layered decoding schedule for the AdjMS and compare its performance with flooding SP decoder.
Observations:- 
1. The performance of the AdjMS decoder is close to the performance of full floating point SP decoder. 
2. At rate ½ the max performance difference between full floating point SP decoder and 6-bit fixed-point AdjMS decoder with layered schedule is 0.08 dB at K = 8000 at BLER 1e-2.
3. At rates larger than ½, there is no visible performance difference between full floating point SP decoder and 6-bit fixed-point AdjMS with layered schedule.
4. At rate 2/5, the max performance difference between full floating point SP decoder and 6-bit fixed-point AdjMS decoder with layered schedule is 0.1 dB at K = 8000 at BLER 1e-2. At other blocklengths it is smaller than 0.1 dB
5. At rate 1/3, the max performance difference between full floating point SP decoder and 6-bit fixed-point AdjMS decoder with layered schedule is 0.15 dB at K = 8000 at BLER 1e-2. At other blocklengths it is smaller than 0.12 dB.
6. At rate 1/5, the max performance difference between full floating point SP decoder and 6-bit fixed-point AdjMS decoder with layered schedule is 0.25 dB at K = 8000 at BLER 1e-2. At other blocklengths it is around 0.2 dB.
7. The fixed point 6-bit AdjMS decoder with layered schedule improves on the error-floor performance of the SP decoder. E.g., for rate 0.2 and K=1000, the performance difference between full floating point SP decoder and 6-bit fixed-point AdjMS decoder with layered schedule is 0.18 dB @ BLER of 1e-2,  whereas the performance difference between full floating point SP decoder and 6-bit fixed-point AdjMS decoder with layered schedule is 0.06 dB @ BLER of 1e-4.
8. Layered schedule speeds up the decoder by almost a factor of 2 over the flooding schedule.

Scale Invariance
In this section we present a scale invariant decoder for LDPC codes. Typically, the decoder for LDPC codes is fed with soft values which are proportional to the received LLRs but the scaling constant is unknown. Such a situation is not unusual in a wireless setting where the correct scaling constant can depend on AGC, channel estimation errors etc.  One or several of such factors in the scaling may be unknown. In [11] a pre-processing step is presented which can be applied to the received LLRs so that the decoder becomes scale invariant. The scale factor is computed based on the equation below which assumes a target operating capacity and uses the (unknown) scaled LLR of received values. More precisely, assume that  represents the scaled (unknown) magnitudes of the LLRs of received values. Here  is the total length of the codeword. Since we know the capacity (operating point) we solve for the unknown scaling constant given by  as follows. 

Where  is the binary entropy function and  is the target capacity or the operating point capacity. In [11] an efficient implementation to determine this scaling constant is also described. Once the scaling constant is obtained, it is applied to the LLRs and supplied to the decoder.
The main message is that the performance of LDPC codes do not depend strongly on the details of the channel given the capacity of the channel. As an example, if we plot the BLER curves for a particular LDPC code, then if we have the capacity of the channel on the x-axis, the performance does not vary much if we are transmitting over the binary-input AWGN channel, or the binary-input flip channel or the binary-input erasure channel. The other main message is that the correct scaling is only required in the region close to the waterfall region of the code. The desired operating point of the code occurs in this waterfall region. If the channel is much worse than the operating point, then the decoding will likely fail even with ideal scaling. If the channel is much better than the operating region, then the sensitivity to scaling will be moderate. The last main message is that the capacity of the channel is determined by the distribution of the magnitude of the LLRs of received value. The scale invariant pre-processing step is then the following. 
Observations:-
1. Scale invariant decoder with a pre-processing step of the received LLRs can make the AdjMS decoder insensitive to LLR scaling by unknown factors such as channel estimation errors, AGC gain etc. 
2. The performance of the scale invariant decoder is close to the performance of full floating point SP decoder. 
Conclusions
Proposal 1: 
1. Use Adjusted Min-Sum for efficient decoding of LDPC codes.
2. Use layered decoder for speeding up the decoding of LDPC codes.
3. Use scale invariant pre-processing step to make the decoder blind to the unknown scaling factors and LLR mismatches.
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Performance Results
The performance of an adjusted Min-Sum decoder on the eMBB scenario set-up is shown in this section. The decoder uses only two outgoing message magnitudes per check node and hence has the same complexity as the MS decoder. The magenta curves are for the SP decoder with flooding schedule with max iterations of 50. The blue curves correspond to the AdjMS decoder with layered schedule and max iterations of 25. The data for AdjMS performance is provided in [12].
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Performance Results with fixed-point AdjMS decoder (Hardware Decoder)
In the previous section we demonstrated that the AdjMS decoder performs very closely to the SP decoder with the complexity of the standard MS decoder. In this section we further review the performance of the AdjMS decoder with hardware concessions. I.e., we consider fixed-point implementation of the AdjMS with 6 bit magnitude LLRs. The area and the complexity of such a decoder has been provided in [13]. The curve in red is floating point SP with flooding schedule and max iterations = 50; curve in grey is floating point AdjMS with layered schedule and max iterations = 25; curve in green is fixed-point AdjMS with layered schedule and max iterations = 25.
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Performance Results on Fading Channels
The performance of the AdjMS over fading channels is also very close to the performance of the SP decoder and is reported in [14].
Performance Results for the Scale Invariant Decoder
Performance results of the scale invariant pre-processing step followed by the 6-bit AdjMS decoder is demonstrated in a few cases. It can be seen that the performance is close to the full floating point SP. In the simulation of the scaled invariant pre-processing step, the capacity target for rate = ½ code was chosen at BLER ~ 1e-2 achieved around EsN0 ~ 1.3 dB which gives the target capacity to be 0.5862. Thus, for the scale invariant decoder at each noise level  (true SNR), the received values are first scaled according to the equation above and then fed to the decoder. What this does is that for true SNR values lower than the operating point the received LLRs are overscaled and for SNR values higher than the operating point, the received LLRs are underscaled. It is demonstrated that the code is insensitive to this LRL scaling and has performance close to the full floating SP decoder.   
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R=0.20,C25_30_4000_20000_Z160 (SP,Flood,50)
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R=0.20,C27_32_6000_30000_Z224 (SP,Flood,50)
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R=0.20,C25_30_8000_40000_Z320 (SP,Flood,50)
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R=0.20,C9_18_100_500_Z12 (SP,Flood,50)

R=0.20,C25_30_400_2000_Z16 

R=0.20,C25_30_1000_5000_Z40
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R=0.20,C25_30_4000_20000_Z160 (SP,Flood,50)

R=0.20,C25_30_8000_40000_Z320

R=0.20,C25_30_4000_20000_Z160 (AdjMS,Layered,25)
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R=0.33,C9_18_100_300_Z12 (SP,Flood,50)
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R=0.33,C9_18_100_300_Z12 (AdjMS,6-bit,layered,25)

R=0.33,C25_30_400_1200_Z16

R=0.33,C25_30_1000_3000_Z40
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R=0.33,C25_30_8000_24000_Z320


image17.emf
-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

10

-4

10

-3

10

-2

10

-1

10

0

4QAM,Rate=0.4; K=100, 400, 1000, 2000, 4000, 8000

Es/No dB

BLER

 

 

R=0.40,C9_18_100_250_Z12 (SP,flood,50)

R=0.40,C25_30_400_1000_Z16
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R=0.50,C25_30_400_800_Z16 (SP,Flood,50)

R=0.50,C25_30_1000_2000_Z40
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R=0.50,C25_30_1000_2000_Z40

R=0.50,C25_30_2000_4000_Z80
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R=0.83,C25_30_400_480_Z16 (SP,Flood,50)

R=0.83,C25_30_1000_1200_Z40

R=0.83,C25_30_2000_2400_Z80

R=0.83,C25_30_4000_4800_Z160
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R=0.89,C25_30_400_450_Z16 (SP,Flood,50)

R=0.89,C25_30_1000_1125_Z40

R=0.89,C25_30_2000_2250_Z80

R=0.89,C25_30_4000_4500_Z160
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R=0.50,C25_30_400_800_Z16 (Scale-Invariant,AdjMS,Layered,25)

R=0.50,C25_30_400_800_Z16 (AdjMS,Layered,25)

R=0.50,C25_30_400_800_Z16 (AdjMS,6-bit,Layered,25)

R=0.50,C25_30_400_800_Z16 (SP,Flood,50)


