	
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]3GPP TSG RAN WG1 #86bis	R1-1609070
Lisbon, Portugal, 10th – 14th Oct. 2016
[bookmark: Source]Agenda item:	8.1.3.1
Source: 	Samsung
Title: 	Analysis on Trade-off between Performance and Complexity
[bookmark: DocumentFor]Document for:	Discussion and Decision
Introduction
In the RAN1#86, several companies provided simulation results to compare the coding performance among candidate channel coding schemes for NR. However, since the simulation was conducted without a unified criteria for decoding complexity, it is unclear if the comparison of the coding performance is fair.
In this contribution, for each coding scheme, we present the computational decoding complexity and provide simulation results of the coding performance with the same computational complexity for fair comparison.
Computational Complexity for Each Candidate Coding Scheme
In the RAN1#86, Samsung presented the computational complexities per 1 decoding iteration for LDPC and LTE Turbo codes, respectively [1]. The computational complexity for LDPC codes is calculated based on the LDPC code proposed in [2]. Note that the structure of the LDPC code proposed in [2] is suitable for incremental redundancy due to the concatenation of many single parity-check codes, i.e., many parity bits are generated by single parity-check codes.
Tables 1 and 2 present computational complexities of turbo and LDPC codes for optimal and sub-optimal decoding algorithms, respectively. Some notation is defined as follows:
Notation
: Information length, : Number of parity bits,
: Number of columns of Sub-Matrix 1 defined in Figure 2 of [3] (i.e., the code length of 11n-like code)
: Memory length of component code of turbo code,
: Average variable node degree without degree-1 nodes in LDPC matrix used actually in decoding process,
: Average check node degree of LDPC matrix used actually in decoding process,
: Maximum iteration number.
Note that since single parity-check bits (i.e., degree-1 bits) in LDPC codes just pass the message obtained from channels to neighbour check nodes in belief propagation decoding algorithm, only additions are needed during variable node processing.
Table 1 Theoretical computational complexity for optimal decoding of turbo, LDPC and polar codes
	
	Turbo (LOG-MAP)
	LDPC (Sum-Product)

	Additions (1)
	(20×2m + 7)K
	2dv,1N1 + (2dc – 1)M

	Comparison (1)
	(8×2m – 4)K
	-

	LUT (6)
	(8×2m – 4)K
	2dcM

* Assuming that the computational costs of Addition: Comparison: LUT (Look-Up-Table) = 1:1:6
Table 2 Theoretical computational complexity for sub-optimal decoding of turbo, LDPC and polar codes
	
	Turbo (Normalized MAX-LOG-MAP)
	LDPC (Offset Min-Sum)

	Additions (1)
	(12×2m + 11)K
	2dv,1N1 + 2M

	Comparison (1)
	(8×2m – 4)K
	(2dc – 1)M

The decoding performance is obviously improved as the number of iterations increases, however, the rate of improvement could slow due to decoding convergence after some iterations. Furthermore, since the decoding complexity increases linearly with the number of iterations for LDPC and turbo codes, the analysis on the trade-off between the complexity and performance is important.

Observation 1: For LDPC and turbo codes, the decoding complexity increases linearly with the number of iterations.

Samsung also presented the computational complexities for Polar codes in [1], based on SC (Successive cancellation) and SCL (SC-List) decoding. Tables 3 and 4 present computational complexities of polar code with SC decoding and Tables 5 and 6 present computational complexities of polar code with SCL decoding.
Some notation is defined as follows:
Notation
: Information length,
: Number of CRC bits
: Block length of polar code (mother code length is ,),
: List size for SCL decoding,

In the bipartite graph of the corresponding binary polar code of length , there are check nodes and variable nodes. For accurate realization, the two-input check node operation can be transformed to three LUTs and one addition.[footnoteRef:1] In the sub-optimal SC decoding, the check node operation is simplified to the min operation. The analytic numbers of primary operations of optimal and suboptimal SC decoding are tabulated in Tables 3 and 4. [1: Here, the check node operation can be realized as a 2-dimensional LUT. However, a 2-dimensional LUT is much more complex than three 1-dimensional LUT operations.]

Table 3 Complexity of optimal SC decoding
	Component
	ADD/SUB(1)
	MIN(1)
	COM(1)
	LUT(6)

	CN Op.
	
	-
	-
	

	VN Op.
	
	-
	-
	-

	Total
	
	-
	-
	

Table 4 Complexity of sub-optimal SC decoding
	Component
	ADD/SUB(1)
	MIN(1)
	COM(1)
	LUT(6)

	CN Op.
	-
	
	-
	-

	VN Op.
	
	-
	-
	-

	Total
	
	
	-
	-

For optimal and suboptimal SCL decoding, computational complexity on primary operations is analysed in Tables 5 and 6. Since paths are maintained in a list, check node and variable node operations and path metric calculations are multiplied by In the PM calculation, because we have to have the PMs of paths for comparison and selection, the number of PM calculations is at each decoding step that makes the total calculations for optimal decoding. But in the suboptimal SCL decoding, a single addition is needed only for a half of paths as described in [3].
Sorting applies similarly to both decoder realizations. As we discussed, for fast decoder implementation, full radix sorter or bitonic sorter can be considered. The computational complexity of them is given in Tables 5 and 6. Because sorting should be carried out for every data bit step, the number of sorting in a SCL decoding is . As one can see, the complexity of a single sorting is quadratic in for radix sorter and quasilinear for bitonic sorter. The bitonic sorter may provide a good trade-off. However, sorting with bitonic sorter will lie on the critical path of the system when it is designed to be done in one clock cycle. For a faster implementation, radix sorter may be used but with quadratic complexity in That being said, it is worth to examine the total computational complexity of SC and SCL decoders implemented with those different sorters.
[bookmark: _Ref446750236]Table 5 Complexity of optimal SCL decoding
	Component
	ADD/SUB(1)
	MIN(1)
	COM(1)
	LUT(6)

	CN Op.
	
	-
	-
	

	VN Op.
	
	-
	-
	-

	PM Calc.
	2
	-
	-
	2

	Sorting
1) Serial
2) Radix-2L
3) Bitonic
	-
	-
	

	-

	Total
	
	
	
	

	Component
	ADD/SUB(1)
	MIN(1)
	COM(1)
	LUT(6)

	CN Op.
	-
	
	-
	-

	VN Op.
	
	-
	-
	-

	PM Calc.
	
	-
	-
	-

	Sorting
1) Serial
2) Radix-2L
3) Bitonic
	-
	-
	

	-

	Total
	
	
	
	-

 Table 6 Complexity of sub-optimal SCL decoding

The decoding performance of polar code is obviously improved as the number of list increases, however, the decoding complexity increases almost linearly with the number of lists.

Observation 2: For polar code, the decoding complexity increases almost linearly with the number of lists.

Performance With the Same Computational Complexity
To evaluate the coding performance of each coding scheme, we conduct simulation under the following assumptions:
· Code: LTE Turbo code, LDPC code proposed by Samsung in [2], Polar code proposed by Huawei in [4].
· K = 1000, 6000
· R = 1/3, 2/3, 8/9
· Decoding algorithm:
· LDPC: Layered scheduling, 0.5 offset min-sum (sub-optimal), sum-product (optimal)
· Turbo: 0.75 scaled max-log-map (sub-optimal), log-map (optimal)
· Polar: min-sum (sub-optimal), sum-product (optimal)
· Note:
· SCL decoding complexity for polar decoding is calculated based on bitonic sorting algorithm.
· Abbreviation (w/ E.T.) means the decoding algorithm with early stopping.

In Figures 1, 2, … 12, we present the coding performance for each coding scheme in terms of computational complexities. From the simulation results, we can get the following observations:
Observation 3: For optimal decoding, long length, high-rate and the same decoding complexity, LDPC code performs much better than turbo code.
Observation 4: For sub-optimal decoding, short length, low-rate and the same decoding complexity, LDPC code performs still slightly better than turbo code.
Observation 5: Polar code performs better than turbo code, but worse than LDPC code.

According to observation 5, the coding performance of polar code looks better than that of turbo code. But a problem of polar code is latency as depicted in Figure 13. Especially, the latency problem is critical for large-length polar code. The more details of analysis on latency are presented in [5].

Observation 6: A critical drawback of Polar code is latency, especially, the latency is critical for large-length polar code.

Based on the above observations, we would like to suggest the following proposal:

Proposal 1: For short packet service scenarios, e.g., control channel, LDPC codes should be considered.

Observations and Proposals
In this contribution, we present the following observations for analysis on a trade-off between computational complexity and the performance for each coding scheme:

Observation 1: For LDPC and turbo codes, the decoding complexity increases linearly with the number of iterations.
Observation 2: For polar code, the decoding complexity increases almost linearly with the number of lists.
Observation 3: For optimal decoding, long length, high-rate and the same decoding complexity, LDPC code performs much better than turbo code.
Observation 4: For sub-optimal decoding, short length, low-rate and the same decoding complexity, LDPC code performs still slightly better than turbo code.
Observation 5: Polar code performs better than turbo code, but worse than LDPC code.
[bookmark: _GoBack]Observation 6: A critical drawback of Polar code is latency, especially, the latency is critical for large-length polar code.

Proposal 1: For short packet service scenarios, e.g., control channel, LDPC codes should be considered.
[image:]

Figure 1. Performance of FEC Schemes (Optimal algorithm, K=6000, R=8/9)

[image:]

Figure 2. Performance of FEC Schemes (Optimal algorithm, K=6000, R=2/3)

[image:]
Figure 3. Performance of FEC Schemes (Optimal algorithm, K=6000, R=1/3)

[image:]
Figure 4. Performance of FEC Schemes (Optimal algorithm, K=1000, R=8/9)

[image:]
Figure 5. Performance of FEC Schemes (Optimal algorithm, K=1000, R=2/3)

[image:]
Figure 6. Performance of FEC Schemes (Optimal algorithm, K=1000, R=1/3)

[image:]
Figure 7. Performance of FEC Schemes (Sub-optimal algorithm, K=6000, R=8/9)

[image:]
Figure 8. Performance of FEC Schemes (Sub-optimal algorithm, K=6000, R=2/3)

[image:]
Figure 9. Performance of FEC Schemes (Sub-optimal algorithm, K=6000, R=1/3)

[image:]
Figure 10. Performance of FEC Schemes (Sub-optimal algorithm, K=1000, R=8/9)

[image:]
Figure 11. Performance of FEC Schemes (Sub-optimal algorithm, K=1000, R=2/3)

[image:]
Figure 12. Performance of FEC Schemes (Sub-optimal algorithm, K=1000, R=1/3)
[image:]
Figure 13. Performance vs Latency (Sub-optimal algorithm, K=1000, R=1/3)
References
[1] R1-166771, Samsung, "Preliminary evaluation results on Quasi-Cyclic LDPC codes," 3GPP TSG RAN WG1 #86, Gothenburg, Sweden, 22-26 Aug. 2016.
[2] R1-167889, Samsung, "Design of Flexible LDPC Codes," 3GPP TSG RAN WG1 #86, Gothenburg, Sweden, 22-26 Aug. 2016.
[3] R1-166772, Samsung, "Performance analysis on Polar codes," 3GPP TSG RAN WG1 #86, Gothenburg, Sweden, 22-26 Aug. 2016.
[4] R1-167209, Huawei, "Polar code design and rate matching," 3GPP TSG RAN WG1 #86, Gothenburg, Sweden, 22-26th Aug. 2016.
[5] R1-1609073, Samsung, "Discussion on latency of channel codes for NR," 3GPP TSG RAN WG1 #86bis, Lisbon, Portugal, 10-14th Oct. 2016.

image3.png
~~LDPC Code
= -06 —+~Turbo Code
o
= —LDPC Code (w/E.T.)
R \A\\\ AN
S -0.8 & \ \]\ —Turbo code (w/ E.T.)
[~
E 4 \\ . \D\ —'—Polar Code
= —
€ 45 \\K ~ \n\
o : R
< -1.4 =
2 \'\\ \O\O\O\o—
> T~ O—0—0 4
-1. O
5 6 o ~—
[~
-1.8
0.0E+00 5.0E+06 1.0E+07 1.5E+07 : 2.0E+07 2.5E+07 3.0E+07
Number of Operations [Equivalent Additions]
1.E+00 g
)\3\(~~Turbo (iter 7)
J\ ~-LDPC (iter 21)
1.E-01 AN
. AN
4 0.25dB
)
1.E-02 \
1.E-03
-2 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1

ES/NO [dB]

image4.png
10

o ~0~LDPC Code
= 95 i \& \ —o~Turbo Code
= 5 i \ —LDPC Code (w/E.T.)
N : .
= : : \ —Turbo code (w/ E.T.)
o H :
w85 : : N ——Polar Code
@ P \ gy
s 8 P g
(o] . H
[A‘S : : \ \
nz: 7.5 : ;]
n NN
° 7 \ PO o —
— . —7x
= \k }O‘O‘%—O—o—o—o—o—o—o—o—o—o—o—o—o-o_o_o_o_o_o_o_o. 5
g 65
o H
6
0.0E+00 : 5.0E+05 1.0E+06 1.5E+06 2.0E+06
{ Number of Operations [Equivalent Additions]
LE+00 nOnsmy
-=Turbo (iter 1)
-0-LDPC (iter 50)

1.E-01 ——Polar (list 2)
o Ju':'uui
w
|
o

1E-02 b NGt s s ses

1.E-03

5.5

7

7.5
ES/NO [dB]

8

10

image5.png
4.8

~-LDPC Code
o 46 [K s\ f\ —-o-Turbo Code
s \ \ —LDPC Code (w/E.T.)
Q . h
E 4.4 H : —Turbo code (w/ E.T.)
é \\(X E\ —~—Polar Code
= 42 i :\
— . ..'
PN N
2 \\}% \ \
= HIR Y
v N
D T - B
= P — o 5
> 36 S 000000006000
(0] [
2 :
34 :
0.0E+00 i 1.0E+06 2.0E+06 3.0E+06 4.0E+06 5.0E+06
i Number of Operations [Equivalent Additions]
1.E+00
ﬁJ‘U\D\D\D\D\[-~Turbo (iter 2)
]\D\D\ -o-LDPC (iter 50)
1.E-01
- \\
w
|
[aa]
1.E-02
1.E-03
2.5 3 35 4 45

"ES/NO [dB]

image6.png
\ ~-LDPC Code
o 0 \ (\ —~Turbo Code
= \\ —LDPC Code (w/E.T.)
X LA
S -0.2 —Turbo code (w/ E.T.)
é \ \ ——Polar Code
= -04
—
o m
Y
= 06
% A
- -0.8 - o
(0] AN \D\D\D\
= N\
3 1 \ :. H oo
o NG M
o by H
-1.2 B
0.0E+00 1.0E+06 '2.0E406 3.0E+06 4.0E+06 5.0E+06
Number of Operations [Equivalent Additions]
1.E+00
=~Turbo (iter 6)
]\m\[-o-LDPC (iter 38)

1.E-01 ~
5 \
w
|
[aa]

1.E-02

1.E-03

2 -1.8 -1.6 -1.4 1.2 -1 0.8 0.6

ES/NO [dB]

image7.png
8.5

~~LDPC Code
) ——Turbo Code
=2 8 —LDPC Code (w/ E.T.)
xR
— —Turbo code (w/ E.T.)
é 7.5 ——Polar Code
o \\;\D\
—
]
«
o
= / N
n
© I\D\ﬂ\ﬂ\'
e oy J\D\k
£ 65 e
g
SLeetecencacecaacecacte
o 30
6
0.0E+00 2.0E+06 4.0E+06 6.0E+06 8.0E+06 1.0E+07
i Number of Operations [Equivalent Additions]
1.E+00 BTN
-=Turbo (iter 2)
-0-LDPC (iter 50)
1.E-01 ——Polar (list 16)
o
w
|
3]
1.E-02
1.E-03 i

5.5

6 6

.5 7

ES/NO [dB]

8.5 9

image8.png
4.2

O —~~LDPC Code
41 | S
= \ ——Turbo Code
2 4 : \ \q —LDPC Code (w/E.T.)
o .
é 3.9 Turbo code (w/ E.T.)
E 3.8 ﬁ H \ —'—Polar Code
| . 0
= [CR A S N
= VL N
= :
36 i
=2 H
AR : \‘ \j\ﬂ\[
s) :
> \ : — N\ \D\”ﬁﬁ\
g P C
[} 3.3 o
e N ’0000000%000?000000000 T
3.2 ks :
0.0E+00 2.QE+06 4.0E+06 6.0E+06 8.0E+06 1.0E+07
Namber of Operations [Equivalent Additions]
1.E+00 Tl
j\D\Aj\D\[=~Turbo (iter 3)
J\D\ —O=-LDPC (iter 50)
1.E-01 Y ——Polar (list 16)
i \”\
= 0.9 dB gap
m .
1.E-02 -\\A XL\
1.E-03 \]\
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5

ES/NO [dB]

image9.png
°
IS

~~LDPC Code
\‘ —o—Turbo Code
—LDPC Code (w/ E.T.)

Turbo code (w/ E.T.)
\ \K \ —'—Polar Code

S
n

il
b
A7~
//

T,

Required SNR for BLER 1% [dB]

1.2 %
-1.3 \\\ S\O\%
14 LT
0.0E+00 2.0E+06 4.0E+06 i 6.0E+06 8.0E+06 1.0E+07
Number of Operations [Equivalent Additions]
1.E+00 -
—~Turbo (iter 7.5)
—o-LDPC (iter 35)
——Polar (list 16)
1.E-01
o \
w
|
[aa] \
1.E-02 A
1.E-03
-1.8 -1.7 -1.6 -1.5 -1.4 -1.3 1.2 ‘11 -1 0.9 0.8

ES/NO [dB]

image10.png
~~LDPC Code
——Turbo Code
—LDPC Code (w/ E.T.)
—Turbo code (w/ E.T.)

—'—Polar Code

=)
S
x
—
o ‘-\
w
5 \
0 \D\n
o —— |
=4
wv
3 ?O000000000000bCCO!
e YO00000000O0OOOOOOCO000
=]
[on
[J]
o<
6
0.0E+00 2.0E+05 4.0E+05 6.0E+05 8.0E+05 1.0E+06
Number of Operations [Equivalent Additions]
1.E4+00
~~Turbo (iter 1.5)
—O-LDPC (iter 50)

1.E-01
o
w
|
[an]

1.E-02

1.E-03

5.5

6 6.5

7
ES/NO [dB]

7.5 8

8.5 9

image11.png
. ~>~LDPC Code
= 4.8 o\ 2 —-o=Turbo Code
1; g 14 .-" \\ —LDPC Code (w/E.T.)
E \ \ i HE \3\ —Turbo code (w/ E.T.)
e 44 _. ——Polar Code
2 L led i\
= 42 it
2 g \Ek
ch 4 o8 ~_
5 P N T
ey ; E \ \D\D\
= A :' S@ 0-O O“O‘O—O-O-O—O—O—O—O—()—(-O~-O0~-0-0-0-0—
S 36 0 —
9] : g0
2 :
3.4 .__
0.0E+00 2:0E+05 4.0E+05 6.0E+05 8.0E+05 1.0E+06
Number of Operations [Equivalent Additions]
1.E+00 — OO
j‘Dﬂj\g\m\[-~Turbo (iter 2)
)\D\D\D\ —o-LDPC (iter 50)

1.E-01
. N
4
- \\ 1.1 dB gap

1.E-02 <

1.E-03

2.5 3 35 4 45 5

"ES/NO [dB]

image12.png
I
S

‘X ~-LDPC Code
o 02 —-Turbo Code
= \ \ ‘X —LDPC Code (w/E.T.)
=]
E 0 —Turbo code (w/ E.T.)
é X ——Polar Code
= -02
—
e . \ \\ E\
e U S\ N
5 06
© -0 s
T 08 NE N R e
: 4N ST ee e
-1 N
0.0E+00 2.0E+05 4.0E+05 6.0E405 8.0E+05 1.0E+06 1.2E+06 1.4E+06
Number of @perations [Equivalent Additions]
1.E+00 -
=~Turbo (iter 5)
-O-LDPC (iter 50)
——Polar (list 16)
1.E-01
o
w
)
[aa]
1.E-02
1.E-03
2 -1.8 -1.6 -1.4 1.2 -1 0.8 0.6 0.4

ES/NO [dB]

image13.png
——LDPC code
—e—Turbo code ||
——Polar code

I I |
14 16 18

I
10
Latency (usec)

+ o o o = 9
s e s s s

%1=4971d @ UNS parnba

& 08

image1.png
~~LDPC Code

—~Turbo Code

—LDPC Code (w/ E.T.)
Turbo code (w/ E.T.)

7.8 A
{FAN
7.4 §

——Polar Code

I~}
=
X
—
[a'
Y72
= VPN
5 7 ' ~
L
o
=~
=z
o —/
-: \ \D\D\D'*
= iy O——
(o
g 00000000000000000000
0.0E+00 5.0E+06 1.0E+07 1.5E+07 2.0E+07 2.5E+07 3.0E+07
% Number of Operations [Equivalent Additions]
1.E+00
==Turbo (iter 2)
—-LDPC (iter 50)
1.E-01 \
o
= 1.7 dB ga
o
eor e L7 gap S
1.E-03
5 5.5 6 6.5 7 7.5 8 8.5 9

ES/NO

[dB]

image2.png
4.2

BLER

~-LDPC Code
o 4 —-Turbo Code
35 —LDPC Code (w/E.T.)
X
— 38 —Turbo code (w/ E.T.)
5 ' —'—Polar Code
-
f=a)
5 36
L2
o
% 34
el ~g
S
> 3.2
Q P-0-0-0-0-0-0-0-TOVV-VOVVVO-VOOO000
o
3 :
0.0E+00 5.0E+06":_ 1.0E+07 1.5E+07 2.0E+07 2.5E+07 3.0E+07
Num'*per of Operations [Equivalent Additions]
1.E+00 O— -
-~Turbo (iter 3)
\ -C-LDPC (iter 50)
1.E-01 \

09 dBgAD
1.E-02 % x

N

25 2.7 29 31 33 35 37 3.9 4.1 43 4.5
ES/NO [dB]

1.E-03

