3GPP TSG RAN WG1 Meeting #86	R1-167213
Gothenburg, Sweden, August 22nd - 26th, 2016

Agenda Item:	8.1.4.1
Source:	Huawei, HiSilicon
Title:	Computational and implementation complexity of channel coding schemes
Document for:	Discussion and Decision

[bookmark: _Ref124589705][bookmark: _Ref129681862]Introduction
Based on the simulation results presented in the in RAN#84 and RAN#85 meetings. Polar Codes exhibit the following advantages:
1) BLER Performance: The Polar Code with CA-SCL32 decoding (CRC-aided successive cancellation list decoding with list size 32) outperforms the Turbo code with 8-iteration MLM (MaxLogMAP) decoding for all code rates and code lengths [1].
2) Flexibility with Finer granularity: A single Polar code supports up to 1-bit granularity to generate any code rate and block length, furthermore it allows the future proof for any new codes required to support future unknown service without the need to change the encoder.
3) Computational complexity: (1) CA-SCL32 Polar Decoder, (2) MLM Turbo decoder with 8-iteration and (3) Min-Sum LDPC decoder with 15~20 iterations have a comparable level of computational complexity. [2]
In this contribution, we will present the current the implementation of a CA-SCL decoder to meet the requirements of NR. We will introduce two other decoding architectures: one for ultra-low-power Polar decoding and one for opportunistic Polar decoding.
Discussions
Implementation of SCL Decoding
A complete polar decoder consists of a rate de-matcher and a polar decoder.
Rate De-Matcher
The rate-matching scheme proposed in [8] relies on a single order sequence for any combination of code length and code rate.
For the encoders with a (M=12, K=6, R=1/2) code block [8]. The first 4 steps are the same for both encoder and decoder. Step-3 is to perform M-K comparisons with N (N is a power-of-two) to generate the frozen set F. These selections in Step-3 can be done in a parallel. Therefore, the latency becomes negligible.
The decoder can execute Step-3 while loading the channel LLRs (log-likelihood ratios). Since the memory required for the channel LLRs is usually much bigger than single order sequence, the latency of Step-3 becomes negligible.

Observation-1: The latency of a rate de-matcher is negligible and the requires memory for this order sequence is size Nmax log2(Nmax).
Decoder Implementation
Basic Architecture
Figure 1 shows an example of the implementation of CA-SCL decoder that supports fully configurable decoding parameters such as list sizes, code lengths, and code rates. It has two inputs: the channel LLRs, produced from the demodulator, and the frozen positions by the rate de-matcher.
For high hardware efficiency/utilization and high decoding throughput, the decoding procedure is implemented in a 11-stage pipeline. Stages 0 to 3 are re-used per list iteration; and stages 8 to 10 are shared by different code blocks.

Figure 1 SCL Decoder
Memory
The benefits from the separation of stages are to reduce the memory size and eliminate the memory copies:
· The interim LLRs are dynamically re-calculated from the static channel LLR metrics and the updated partial-sums during the first 4 stages. A well-designed pipeline removes any extra latency due to these re-calculations.
· According to the list decoding algorithm, the first stages are supposed to take much more memory than the later stages. Stages 0 to 3 are supposed to take N/2, N/4, N/8, and N/16 LLRs, respectively. Dynamical re-calculation decreases the size of the required memory by a factor of 16.
· The implementation maintains a path-lookup or a path-pointer table/crossbar to indicate a new path where to pull the right static LLR metrics and partial sum metrics, which eliminates the memory copy.
The implementation takes the following quantization that is verified through extensive simulations to ensure no performance loss:
· A 5-bit channel LLR.
· A 6-bit interim LLR in case of N<=2K and 7-bit metric in case of N>=16K.
· A 5-bit path metric for CA-SCL32 and 6-bit one for higher list size
[bookmark: OLE_LINK5][bookmark: OLE_LINK6]In an example for code length N=2048, code rate R=1/2 and CA-SCL32 decoding, the total required memory is 221 Kbit. A reduced-stage implementation can further decrease the memory size.
Latency
The implementation based on the selective-path-extension and frozen-bit-skip-logic techniques is introduced in [2]. The selective-path-extension can bypass over 70% of the path-sorting/selection operations without performance loss; whereas the frozen-bit-skip-logic can avoid over 50% of the interim LLR calculations. A reduced-stage implementation can further decrease the decoding latency. These implementation techniques allow the Polar decoding latency to meet the NR requirements.
Throughput
The pipeline of this implementation can support up to 8 middle & large size code blocks and up to 20 small blocks for a CA-SCL decoder simultaneously.
Decoder for eMBB
BLER performance and decoding latency are considered as the major criteria in the case of the eMBB downlink decoder. The average latencies of a CA-SCL decoder are:

Table 1: Average Decoding Latency of CA-SCL Decoder for eMBB Downlink
	N
	Latency(us)
	Decoder

	N<=1K
	<12
	CA-SCL32

	2K/4K
	< 24
	CA-SCL32

	8K/16K
	< 45
	CA-SCL 32

A reduced-stage implementation can further decrease the latency lasted in Table 1
Observation-2: The latency of Polar CA-SCL32 decoder can meet the requirements of the NR eMBB use case..
Decoder for URLLC
BLER performance and low latency are considered as the major criteria in the case of the URLLC Uplink & Downlink decoder [9]. Because of the low code rates, the frozen-bit-skip-logic technique can further reduce the latency.
Table 2: Average Decoding Latency of CA-SCL Decoder for uRLLC
	N
	Latency (us)
	Decoder

	<=512
	< 13
	CA-SCL64

	1K
	< 8
	CA-SCL32

	2K/4K
	< 15
	CA-SCL32

	8K/16K
	< 32
	CA-SCL 32

A reduced-stage implementation can further decrease the latency lasted in Table 2
Observation-3: The latency of Polar CA-SCL32 or CA-SCL64 decoder can meet the requirements of the NR uRLLC on both uplink and downlink.
Decoder for mMTC
mMTC uplink decoder
As suggests by [10], the BLER performance is considered as the major criteria in the case of the mMTC Uplink decoder. Given a 1ms decoding latency budget, the decoding list size can be as large as possible.
Table 3: List Size of CA-SCL Decoder for mMTC uplink
	N
	Decoder

	<=512
	CA-SCL128

	1K
	CA-SCL64

	2K/4K
	CA-SCL32

mMTC downlink decoder
The power consumption and die area are considered as the major criteria in case of mMTC Downlink decoder. In [10], the simulation results show that the CA-SCL4 decoder has a performance similar to that of the TBCC Viterbi decoder. For this particular scenario, we present an example for the silicon implementation:
Table 4: Power and Area of CA-SCL-4 Decoder for mMTC Downlink
	Parameters
	Values (worst corner)
	Values (worst corner)

	Frequency
	100MHz
	25MHz

	Memory
	88.5K bits (can be reduced to 44Kbits)
	88.5K bits (can be reduced to 44Kbits)

	Die Area (HVT)
	0.07sqmm
	0.07sqmm

	Latency
	14~20 us
	56~80 us

	Power Consumption
	< 5mW
	~1mW

Observation-4: Polar CA-SCL32 or CA-SCL128 decoder can be implemented on mMTC uplink decoder; Polar CA-SCL-4 can be implemented with very low power consumption for mMTC downlink decoder.
Other Decoding Architectures
SC-Flip Decoder for mMTC Downlink Decoder
To achieve lower power consumption and smaller die area (memory size), an SC Flip decoder is proposed in [6]. The SC flip complexity is comparable to the SC decoder and provides significant gain in terms of BLER. For example, the performance of an SC flip decoder with 4 iterations can reduce the BLER by a magnitude order [11] & [6].
A SC-Flip decoder is a list-free decoder with the similar memory requirements as an SC decoder. For example, the total memory decreases from 88.5K bit (CA-SCL4, in Table-4) to 4K bit (SC Flip). The total number of Flip-Flop counts is less 3000. It is estimated that the total area would shrink to less than 0.01sqmm and consumes less than 0.5 mW power (65nm).
Observation-5: SC Flip decoder can be a very attractive decoder for mMTC decoder for its tiny area and ultra-low power consumption.
 Prioritized Parallel Decoding (PPD) Architecture
To reduce the complexity and memory size and to improve the parallelism of a Polar decoder, [7] proposes a prioritized parallel decoder (PPD) that can reach the BLER performance of a CA-SCL decoder as verified by the simulations.
As the early termination mechanism of Turbo Decoding and LDPC decoding, Polar Code decoder can benefit from this kind of opportunistic decoding too: its worst case memory size is reduced to 25% of a CA-SCL decoder according to [7].
 Table 7: LLR Computation Reduction Due to Pruning Scheme
	BLER
	LLR computation after pruning (CA-SCL-32=100%)

	10-1
	50%

	10-2
	20%

	10-3
	7%

The PPD architecture prunes the decision tree dynamically based on the reliability of a given bit. More importantly, within the SNR range corresponding to a target BLER, the complexity of LLR computation can be reduced to less than 20% of a conventional SCL decoder as shown in Table-7.
Table 8: Sorting Reduction Due to Splitting Scheme
	BLER
	Sorting complexity after split reducing (SCL-32=100%)

	10-1
	15%

	10-2
	6%

	10-3
	2%

In the PPD architecture, the sorting operation is simplified by a splitting scheme that splits the decoding path in the decision tree during path extension. If the decoder experiences a relatively high reliability, it is unnecessary to do all 2L entries but split them. By doing that, with the SNR range corresponding to a target BLER of 10-2, the complexity of the sorting operations can be reduced to less than 6% of the SCL decoder.
In Table 8, the splitting rate can be quite low (2%~15%) in the range of interest. A decoding path usually proceeds without the need to be pushed to or popped from the queue, leading into a highly parallelized memory organization and high utilization of PEs:

Figure 4 Architecture of PPD decoder in high parallelism
The decoding path behaves the same as that of a standalone SC decoder. Multiple paths of this type can be developed in parallel, as shown in the figure above. To have a performance similar to that of a SCL32 decoder, [7] proposes an eight-parallel-processing unit architecture, each of which contains an independent RAM unit for storing the LLR table and a processing element (PE) for computing the LLRs. This is a good architecture for both hardware high-utilization implementations:
1. The l best paths run in parallel. The splitting rate is very low (<3% for BLER=10-2).
2. The priority queue and the l paths are processed in parallel.
 Observation-6: Polar decoding can be opportunistic to reduce memory, complexity, and improve parallelism.
[bookmark: _Ref124589665][bookmark: _Ref71620620][bookmark: _Ref124671424]Conclusion
Complexity of Rate-(de)-matcher
We evaluated the rate (de)-matcher complexity and latency.

Observation-1: The latency of a rate de-matcher is negligible and the requires memory for this order sequence is size Nmax log2(Nmax).
SCL for NR
We introduced an example of the implementation of a CA-SCL decoder with a fully configurable setup.
Observation-2: The latency of Polar CA-SCL32 decoder can meet the requirements of the NR eMBB use case.
Observation-3: The latency of Polar CA-SCL32 or CA-SCL64 decoder can meet the requirements of the NR uRLLC on both uplink and downlink.
Observation-4: Polar CA-SCL32 or CA-SCL128 decoder can be implemented on mMTC uplink decoder; Polar CA-SCL-4 can be implemented with very low power consumption for mMTC downlink decoder.
Other Architectures
[bookmark: _GoBack]We discussed about two other architectures: one for ultra-low power-consumption polar decoder and one for the opportunistic decoder.
Observation-5: SC Flip decoder can be a very attractive decoder for mMTC decoder for its tiny area and ultra-low power consumption.
Observation-6: Polar decoding can be opportunistic to reduce memory, complexity, and improve parallelism.
 References
[bookmark: _Ref367787843][bookmark: _Ref383190669]R1-164039 “Polar Codes: Encoding and Decoding”, Huawei, HiSilicon
R1-164040 “On latency and complexity”, Huawei, HiSilicon
E. Arikan, “Channel Polarization: A method for constructing capacity-achieving codes for symmetric binary input memoryless channels”
I. Tal, A.Vardy, “List Decoding of Polar Codes”, May 2012
K.Chen, K,Niu, Jia-Ru Lin, “Improved Successive Cancellation Decoding of Polar Codes”, Jan 2013
Orion Afisiadis, A.Balatsoukas-Stimming, and A.Burg, “A low-complexity improved successive cancellation decoder for Polar Codes”, Dec 2014
R1-167240 “On polar decoders”, Huawei, HiSilicon
R1-167209 “Polar code design and rate matching”, Huawei, HiSilicon
R1-167214 “Channel coding schemes for URLLC scenario”, Huawei, HiSilicon
R1-167215 “Channel coding schemes for mMTC scenario”, Huawei, HiSilicon
C. Leroux, A. Raymond, G. Sarkis, W. Gross: “A Semi-Parallel Successive Cancellation Decoder for Polar Codes”, Dec 2014
M. Mondelli, S. H. Hassani, R. Urbanke, “Unified Scaling of Polar Codes: Error Exponent, Scaling Exponent, Moderate Deviations, and Error Floors”
R1-167212 “Performance of polar and LDPC codes for eMBB scenarios”, Huawei, HiSilicon

image2.emf
SC List Decoder

Shared Resource for TX

Shared Resource for LLR Stages #LogN-2 ~ LogN & SORT 4 stages PE group per LIST iteration Per Codeword

Stages8 –10

4

P

E

2

P

E

4

P

E

2

P

E

4

P

E

2

P

E

1 of LIST instances

Stages(0–3) *Iter

6

4

X

P

E

3

2

X

P

E

1

6

X

P

E

8

X

P

E

1

9

2

X

F

F

s

Stages (0-3)*#Iter PSUM Memory

4

8

F

F

s

Stages (0-3) *#Iter

LLR Memory

4

P

E

2

P

E

1

2

F

F

s

P

E

P

E

P

M

PM SORT

S

t

a

g

e

L

O

G

N

-

2

A

r

b

i

t

e

r

Per-Codeword Stage

Stage

LOGN-3

LLR Storage

8X In-Flight PSUM Storage

per codewaord

7

6

8

F

F

s

C

h

a

n

n

e

l

L

L

R

M

e

m

o

r

y

I

n

f

o

r

m

a

t

i

o

n

B

i

t

s

M

e

m

o

r

y

Per-Codeword

I-bits and CRC

I-Bits

Accumulation

1 of LIST instances

1

6

F

F

s

1

6

-

b

i

t

C

R

C

D

e

c

o

d

e

d

C

o

d

e

w

o

r

d

M

e

m

o

r

y

B

i

t

S

t

a

t

u

s

M

e

m

o

r

y

T

X

SORT Bypass

oleObject2.bin
SC List Decoder

Shared Resource for TX

Shared Resource for LLR Stages #LogN-2 ~ LogN & SORT

4 stages PE group per LIST iteration Per Codeword

Stages 8 – 10

4 PE

2 PE

4 PE

2 PE

4 PE

2 PE

1 of LIST instances

Stages (0–3) *Iter

64X PE

32X PE

16X PE

8X PE

192X FFs

Stages (0-3)*#Iter PSUM Memory

48 FFs

Stages (0-3) *#Iter
LLR Memory

4 PE

2 PE

12 FFs

PE

PE

PM

PM SORT

Stage LOGN-2 Arbiter

Per-Codeword Stage Stage LOGN-3 LLR Storage

8X In-Flight PSUM Storage per codewaord

768 FFs

Channel
LLR Memory

Information Bits Memory

Per-Codeword  I-bits and CRC

I-Bits Accumulation

1 of LIST instances

16 FFs

16-bit CRC

Decoded Codeword Memory

Bit Status Memory

TX

SORT Bypass

image3.emf
Queue

PE PE PE PE PE PE PE

Pop Path

PE

LLR tables (before save points)

LLR

LLR

LLR

LLR

LLR

LLR

LLR

LLR

LLR

LLR

LLR

LLR

LLR

LLR

LLR

LLR

LLRs (after save points, online computing)

Path

Look for parent save point

Path 0 Path 1

Split

Push Paths

Update Splitting Tree

& Save Points

oleObject3.bin
Queue

Pop Path

LLR

PE

LLR

Update Splitting Tree
& Save Points

LLR tables (before save points)

LLR

LLR

LLR

LLR

LLR

LLR

LLR

LLR

LLR

PE

PE

LLR

PE

PE

PE

PE

PE

LLR

LLR

LLR

LLR

LLRs (after save points, online computing)

Path

Look for parent save point

Path 0

Path 1

Split

Push Paths

oleObject4.bin

image1.wmf
´

oleObject1.bin

