3GPP TSG RAN WG1 #85 R1- 165409
Nanjing, China 23rd - 27th May 2016

Source: ZTE Corp., ZTE Microelectronics
Title:		 Consideration on LDPC codes for NR
Agenda item: 7.1.5.1
Document for: Discussion/Decision

Introduction
At the 3GPP TSG RAN #71 meeting, the Study Item description on “Study on New Radio Access Technology " was approved [1]. In this contribution, considerations of LDPC coding schemes are presented.
5G Requirements for Channel Coding
3GPP has just finished a study item of “Scenarios and Requirements for Next Generation Access Technologies” [2]. In the technical report several channel coding related KPIs have been proposed, include:
· the target for peak data rate should be 20Gbps for downlink and 10Gbps for uplink,
· the target for peak spectral efficiency should be 30bps/Hz for downlink and 15bps/Hz for uplink,
· for URLLC the target for user plane latency should be 0.5ms for UL, and 0.5ms for DL,
· the target for reliability should be 1-10-5 within 1ms,
· the target for UE battery life should be [15 years].
[bookmark: OLE_LINK10][bookmark: OLE_LINK11]The KPIs are supposed to meet the various requirements of families of usage scenarios for IMT 2020 and beyond. The major scenarios are eMBB (enhanced Mobile Broadband), mMTC (massive Machine Type Communications) and URLLC (Ultra-Reliable and Low Latency Communications).
In mMTC, the core requirement is to provide massive service connectivity with low energy consumption and low cost. In URLLC, extreme requirements on availability and reliability of transmission are emphasized, which means low error probability and low outage rate are the main targets in this usage scenario. While in eMBB, high system capacity, high data rate, and high spectrum efficiency are the main targets.
Obviously, legacy LTE channel coding scheme will face a great challenge to meet various demands of the new RAT. In this contribution, LDPC codes with flexibility of code block sizes, code rates and IR-HARQ are presented.
Low Density Parity Check (LDPC) Codes
A LDPC code is defined by a sparse parity check matrix, which can be mapped to a bipartite graph composed of check nodes and variable nodes, as shown in Figure 1.

[bookmark: _Ref446942287]Figure 1 Tanner Graph for LDPC Codes
LDPC codes have excellent performance based on iteratively belief-propagation (BP), also known as message passing algorithm as shown in Figure 2.

[bookmark: _Ref446942572]Figure 2 Tanner Graph for LDPC Codes
[bookmark: OLE_LINK9][bookmark: OLE_LINK12]The LDPC codes are powerful linear block codes with near-capacity performance. And, LDPC codes have lower error floor than turbo codes. Due to the parallelism characteristic, LDPC decoders have a great potential to achieve high decoding throughput. It also requires less operations when compared with existing turbo codes having the same performance [3][4]. The LDPC codes were researched for decades and have been widely used in multiple communications, such as microwave communication, optical fibre communications. The LDPC codes are very suitable for high throughput and high performance application scenarios, which have high-frequency and large bandwidth. Except the BP decoding algorithm, the delayed stochastic decoding for LDPC can provide maximum throughputs of over 150 Gb/s [5].
[bookmark: _Toc170195237][bookmark: _Toc170195507][bookmark: _Toc170195776][bookmark: _Toc170196045][bookmark: _Toc170196315][bookmark: _Toc170196585][bookmark: _Toc170196855][bookmark: _Toc170197125][bookmark: _Toc170197573][bookmark: _Toc170197899][bookmark: _Toc170198452]Structured LDPC Codes

The parity check matrix of (n, k) structured LDPC codes is defined by size , and H is determined by a base check matrix of size , an expanding factor and a permutation matrix of size . The size of systematic bits is , the size of codeword is , then code rate is . If each element in the base check matrix is replaced by zero sub-block matrix of size or the sub-block matrix , the parity check matrix can be obtained.

The base check matrix is defined as follows:

 (3-1)

And, a parity check matrix is defined as follows:

 (3-2)

where, if , equals a zero matrix of size ; otherwise, equals a permutation matrix to power. The permutation matrix of size is defined as follows:

A base check matrix for LDPC code with 16 rows and 24 columns is shown as Figure 3. The maximum expanding factor , which is evaluated for different code block sizes and code rates.
[image:]
Figure 3 A base check matrix for LDPC code
LDPC encoding

The LDPC codeword can be expressed as , wherein is a systematic sequence and is a parity sequence.

LDPC encoding is a process of determining the parity sequence of size given an information sequence of size .Then, the LDPC codeword can be obtained as . Where, , , .
The process of LDPC encoding includes three steps as follows using the base check matrix with Lower triangular structure as shown above.
(1)
Calculating the intermediate variable as follows:

 (3-3)
(2)
The parity sequence can be calculated as follows:

 (3-4)

 (3-5)
(3)
Finally, the LDPC codeword is .

Flexibility of LDPC Code Rates
According to the LDPC encoding principle, the code rate can be calculated as

 (3-6)

where is the number of systematic columns of LDPC base check matrix, and is the number of all columns. As shown in Figure 4, is the number of rows for LDPC base check matrix, where . Therefore, the code rate can be changed flexibly with different number of rows & columns for base check matrix.

Figure 4 An example of base check matrix for LDPC code

As shown in Figure 5 and Figure 6, LDPC code rates are determined by the number of base check matrix rows , each of which can be expressed as,

 (3-7)

Flexible LDPC code rates can be achieved by different numbers of rows . For example, =8, the code rate R=1/2 is obtained with =8, and the code rate R=2/3 is obtained with =4. In other words, changing the number of parity columns means that some parity bits are punctured out of a big codeword.
Meanwhile, the code rate can be changed by the different number of systematic columns as shown in figure 5, which is expressed as bellow.

 (3-8)

For example, if =8, the code rate R=1/2 can be obtained with =8, and the code rate R=3/4 can be obtained with =4. Besides, any bits are shortened to obtain more flexible code rates during shortening encoding. The code rate of LDPC codes can be very flexible through puncturing and shortening.

Figure 5 Different Code Rates for LDPC Codes with Puncturing

Figure 6 Different Code Rates for LDPC Codes with Shortening
The code rates would be higher for high data rate or throughput in scenario of eMBB. However, in URLLC and mMTC, it may need lower code rates for better BLER performance. According to the flexible code rates scheme described above, the LDPC code rate can be obtained from very low rate to high rate. Therefore, LDPC codes can fully support flexible code rates for eMBB, URLLC and mMTC.

Observation 1: The LDPC code rates can be very flexible through puncturing and shortening to obtain the same rates as turbo code in LTE system, which can fully support flexible code rates for eMBB, URLLC and mMTC.
Proposal 1: LDPC code design should support flexibility of code rates.
Flexibility of LDPC Codes Block Sizes

According to the LDPC encoding principle, the LDPC codes block size is determined by the expanding factor (z) and systematic columns (kb), whose expression is shown as: . Therefore, different LDPC codes block size can be obtained through changing the expanding factor (z) or / and systematic columns (kb).
1. Scaling Expanding Factor

If systematic columns (kb) is fixed, the LDPC codes block size can support length of any integral multiple of kb by scaling expanding factor (z), according to the expression of . For example, , the code block sizes can support the same sizes of turbo code in LTE system which are shown in appendix. The elements in base check matrix may need to be modified since the values of z is different.
Observation 2: LDPC codes can support the same flexible code block sizes as turbo codes in LTE system by scaling expanding factor.
2. Shortening Encoding
In a similar way, if expanding factor (z) is fixed, the LDPC codes block size can support length of any integral multiple of z by changing the value of kb, which means shortening encoding. Meanwhile, it will support very flexible codes block size for shortening of any bits length. Some padding bits may be filled during shortening encoding, whose locations must be known to transmitter & receiver. During the decoding, infinite values are filled in the padding bits’ location. For example, if the length of systematic bits equals 8000, it will support the code block sizes of less than 8000. In order to obtain the same code rate in shortening encoding, some parity bits may be punctured out of codeword.
Observation 3: LDPC codes can support flexible code block size by shortening encoding.
It will provide more flexible code block size for LDPC codes by combining the scaling expanding factor and the shortening encoding.
Observation 4: It can provide more flexible code block size for LDPC codes by combining the scaling expanding factor and shortening encoding & puncturing.
Proposal 2: LDPC code design should support flexibility of code block sizes.
The smallest step of code block size for LTE turbo code equals to 8 bits and the maximum is 64 bits, which supports very flexible code block sizes. However, the data throughput may be much higher in scenario of eMBB and the transmitted block size may be much bigger than that of LTE. Whether the same granularity of code block size of LTE should be maintained requires further discussion as too fine granularity may not be necessary if many of them may not be used and the system may be too complicated. Therefore, it is necessary to consider the trade-off between flexibility and system complexity when design the TBS for 5G system.
IR HARQ for LDPC Codes

For energy-efficient data transmission, it is necessary to support incremental redundancy (IR) for retransmission. For IR HARQ, extra parity bits are retransmitted to get coding gain for lower code rate. In Figure 7, a IR HARQ scheme for LDPC codes is depicted for different retransmissions. In the 1st transmission, the smaller high-rate LDPC code is transmitted, and the decoder operates with base check matrix of parity columns (and rows) as shown in Figure 8. If the decoding fails, the 2nd transmission is transmitted which allows the decoder to operate on the bigger low-rate with base check matrix of parity columns (and rows) and achieve successful decoding. The 1st transmission has the smallest base check matrix, whose decoding latency is low and throughput is high. The decoding latency for other retransmissions may increase successively. However, compared with system HARQ latency, the decoding latency of retransmission may be negligible.

Figure 7 An IR HARQ Scheme for LDPC Code

Figure 8 An Example of IR HARQ with base check matrix for LDPC

Observation 5: Extra parity bits can be retransmitted to support IR HARQ for LDPC codes.
Proposal 3: LDPC base check matrix design should support for IR HARQ.

 Advantages of LDPC codes
1. Performance. LDPC has almost the same performance as turbo code, or even better than Turbo in some cases [9].
2. Flexibility. LDPC can support flexible code block sizes and code rates by scaling the expanding factor and the shorten coding method, so it can fully support all the code block sizes and code rates as LTE turbo code.
3. Throughput. LDPC can achieve a greater throughput than the turbo codes under the same code block size and code rate due to the inherent parallelism of LDPC code. Especially, LDPC codes can get higher throughput in high code rate and big code block size case. The maximum 5G system throughput (20gbps) could generally be obtained in high code rate and long code block sizes case, which is nearly impossible for turbo coding.
4. Latency. LDPC decoder has parallel characteristics, so its decoding speed will be relatively fast, that is, the decoding delay will be very low, which will meet the requirements of URLLC scenario.
5. Complexity. Turbo code’s complexity will become bigger in a higher rate, while LDPC code is opposite. LDPC code’s complexity will be lower at a high code rate, which means it is more conducive to realize a higher throughput and lower complexity;
6. Power consumption. BLER need below the 10e-5 for URLLC scenarios. To achieve the object, LDPC code just needs a low number of iterations, e.g. normally 1 to 2 times will be enough. However, turbo codes usually need many times iterations. So the power consumption of the LDPC codes is far lower than that of turbo codes.
7. Maturity. LDPC code has already been adopted in IEEE802.16e, IEEE802.11n, IEEE802.11ad, IEEE802.11ac, DVB, microwave communication, optical fiber and so on, and the decoder implementation is very mature.
Proposal 4: LDPC code should be considered as the channel coding scheme for NR for its benefits such as high-performance, flexible codes block size & code rate, high throughput, low latency, low complexity and high maturity.

Conclusion
In this contribution, considerations of LDPC coding schemes for the new RAT are presented. In summary, we have the following proposals and observations:
Observation 1: The LDPC code rates can be very flexible through puncturing and shortening to obtain the same rates as turbo code in LTE system, which can fully support flexible code rates for eMBB, URLLC and mMTC.
Observation 2: LDPC codes can support the same flexible code block sizes as turbo codes in LTE system by scaling expanding factor.
Observation 3: LDPC codes can support flexible code block size by shortening encoding.
Observation 4: It can provide more flexible code block size for LDPC codes by combining the scaling expanding factor and shortening encoding & puncturing.
Observation 5: Extra parity bits can be retransmitted to support IR HARQ for LDPC codes.

Proposal 1: LDPC code design should support flexibility of code rates.
Proposal 2: LDPC code design should support flexibility of code block sizes.
Proposal 3: LDPC base check matrix design should support for IR HARQ.
Proposal 4: LDPC code should be considered as the channel coding scheme for NR for its benefits such as high-performance, flexible codes block size & code rate, high throughput, low latency, low complexity and high maturity.

References
[1]. [bookmark: _Ref446920163]3GPP SID in RP-160671.
[2]. [bookmark: _Ref446920222]3GPP TR 38.913 V0.3.0, “Study on Scenarios and Requirements for Next Generation Access Technologies (Release 14)”, 2016-03.
[3]. [bookmark: _Ref446942765]3GPP R1-060022, LDPC Codes for E-UTRA, RAN1#44.
[4]. [bookmark: _Ref446942770]3GPP R1-060874, Complexity Comparison of LDPC Codes and Turbo Codes.
[5]. Ali Naderi, Shie Mannor, Mohamad Sawan, Warren J. Gross., Delayed Stochastic Decoding of LDPC Codes, IEEE Trans on Signal Processing, VOL. 59, NO. 11, NOVEMBER 2011
[6]. Jin Xu, Jun Xu.,Structured LDPC Applied in IMT-Advanced System. International Conference on Wireless Communications, Networking & Mobile Computing, 2008:1-4
[7]. 3GPP TSG RAN WG1 #44,R1-060499, Structured LDPC coding with rate matching. Denver, USA, February 13-17, 2006
[8]. Robert Xu, David Yuan, Li Zeng. High Girth LDPC Coding for OFDMA PHY. IEEE 802.16 Broadband Wireless Access Working Group. IEEE C802.16e-05/031
[9]. R1-164277 Evaluation on performance and complexity of channel coding for NR, 3GPP RAN WG1 #85.

Appendix

Turbo Code Block Sizes of LTE System

TS 36.212, Table 5.1.3-3: Turbo code internal interleaver parameters.
	i
	K
	

	

	i
	K
	

	

	i
	K
	

	

	i
	K
	

	

	1
	40
	3
	10
	48
	416
	25
	52
	95
	1120
	67
	140
	142
	3200
	111
	240

	2
	48
	7
	12
	49
	424
	51
	106
	96
	1152
	35
	72
	143
	3264
	443
	204

	3
	56
	19
	42
	50
	432
	47
	72
	97
	1184
	19
	74
	144
	3328
	51
	104

	4
	64
	7
	16
	51
	440
	91
	110
	98
	1216
	39
	76
	145
	3392
	51
	212

	5
	72
	7
	18
	52
	448
	29
	168
	99
	1248
	19
	78
	146
	3456
	451
	192

	6
	80
	11
	20
	53
	456
	29
	114
	100
	1280
	199
	240
	147
	3520
	257
	220

	7
	88
	5
	22
	54
	464
	247
	58
	101
	1312
	21
	82
	148
	3584
	57
	336

	8
	96
	11
	24
	55
	472
	29
	118
	102
	1344
	211
	252
	149
	3648
	313
	228

	9
	104
	7
	26
	56
	480
	89
	180
	103
	1376
	21
	86
	150
	3712
	271
	232

	10
	112
	41
	84
	57
	488
	91
	122
	104
	1408
	43
	88
	151
	3776
	179
	236

	11
	120
	103
	90
	58
	496
	157
	62
	105
	1440
	149
	60
	152
	3840
	331
	120

	12
	128
	15
	32
	59
	504
	55
	84
	106
	1472
	45
	92
	153
	3904
	363
	244

	13
	136
	9
	34
	60
	512
	31
	64
	107
	1504
	49
	846
	154
	3968
	375
	248

	14
	144
	17
	108
	61
	528
	17
	66
	108
	1536
	71
	48
	155
	4032
	127
	168

	15
	152
	9
	38
	62
	544
	35
	68
	109
	1568
	13
	28
	156
	4096
	31
	64

	16
	160
	21
	120
	63
	560
	227
	420
	110
	1600
	17
	80
	157
	4160
	33
	130

	17
	168
	101
	84
	64
	576
	65
	96
	111
	1632
	25
	102
	158
	4224
	43
	264

	18
	176
	21
	44
	65
	592
	19
	74
	112
	1664
	183
	104
	159
	4288
	33
	134

	19
	184
	57
	46
	66
	608
	37
	76
	113
	1696
	55
	954
	160
	4352
	477
	408

	20
	192
	23
	48
	67
	624
	41
	234
	114
	1728
	127
	96
	161
	4416
	35
	138

	21
	200
	13
	50
	68
	640
	39
	80
	115
	1760
	27
	110
	162
	4480
	233
	280

	22
	208
	27
	52
	69
	656
	185
	82
	116
	1792
	29
	112
	163
	4544
	357
	142

	23
	216
	11
	36
	70
	672
	43
	252
	117
	1824
	29
	114
	164
	4608
	337
	480

	24
	224
	27
	56
	71
	688
	21
	86
	118
	1856
	57
	116
	165
	4672
	37
	146

	25
	232
	85
	58
	72
	704
	155
	44
	119
	1888
	45
	354
	166
	4736
	71
	444

	26
	240
	29
	60
	73
	720
	79
	120
	120
	1920
	31
	120
	167
	4800
	71
	120

	27
	248
	33
	62
	74
	736
	139
	92
	121
	1952
	59
	610
	168
	4864
	37
	152

	28
	256
	15
	32
	75
	752
	23
	94
	122
	1984
	185
	124
	169
	4928
	39
	462

	29
	264
	17
	198
	76
	768
	217
	48
	123
	2016
	113
	420
	170
	4992
	127
	234

	30
	272
	33
	68
	77
	784
	25
	98
	124
	2048
	31
	64
	171
	5056
	39
	158

	31
	280
	103
	210
	78
	800
	17
	80
	125
	2112
	17
	66
	172
	5120
	39
	80

	32
	288
	19
	36
	79
	816
	127
	102
	126
	2176
	171
	136
	173
	5184
	31
	96

	33
	296
	19
	74
	80
	832
	25
	52
	127
	2240
	209
	420
	174
	5248
	113
	902

	34
	304
	37
	76
	81
	848
	239
	106
	128
	2304
	253
	216
	175
	5312
	41
	166

	35
	312
	19
	78
	82
	864
	17
	48
	129
	2368
	367
	444
	176
	5376
	251
	336

	36
	320
	21
	120
	83
	880
	137
	110
	130
	2432
	265
	456
	177
	5440
	43
	170

	37
	328
	21
	82
	84
	896
	215
	112
	131
	2496
	181
	468
	178
	5504
	21
	86

	38
	336
	115
	84
	85
	912
	29
	114
	132
	2560
	39
	80
	179
	5568
	43
	174

	39
	344
	193
	86
	86
	928
	15
	58
	133
	2624
	27
	164
	180
	5632
	45
	176

	40
	352
	21
	44
	87
	944
	147
	118
	134
	2688
	127
	504
	181
	5696
	45
	178

	41
	360
	133
	90
	88
	960
	29
	60
	135
	2752
	143
	172
	182
	5760
	161
	120

	42
	368
	81
	46
	89
	976
	59
	122
	136
	2816
	43
	88
	183
	5824
	89
	182

	43
	376
	45
	94
	90
	992
	65
	124
	137
	2880
	29
	300
	184
	5888
	323
	184

	44
	384
	23
	48
	91
	1008
	55
	84
	138
	2944
	45
	92
	185
	5952
	47
	186

	45
	392
	243
	98
	92
	1024
	31
	64
	139
	3008
	157
	188
	186
	6016
	23
	94

	46
	400
	151
	40
	93
	1056
	17
	66
	140
	3072
	47
	96
	187
	6080
	47
	190

	47
	408
	155
	102
	94
	1088
	171
	204
	141
	3136
	13
	28
	188
	6144
	263
	480

Scheme of Different Code Rates and Code Block Sizes, Examples, Modification

A K information bits are LDPC encoded into N bits with code rate of R. Based on the code rate of R, the number of columns is calculated as , and the rows number is . A minimum threshold of equals . That is, if calculated value of is less than , setting . The expanding factor is obtained by . Starting from the top left corner of mother base check matrix, a sub-matrix of columns and rows is subtracted and it is modified by scale-floor rule.

 (6-1)

It may need to padding bits if the length (K) of information bits is less than . The mother puncturing pattern vector is PV=[1, 2, 3, 4, 5, 6, 7, 8, 12, 10, 9, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], and the first elements of PV are used. The padding bits are removed and the transmitted coded block size is bits.
Example: LDPC codes for eMBB.

The mother base check matrix is shown below with and .
[image:]

The coded base check matrix for code rate 2/3 and code block size 4000. Expanding factor: .
[image:]

The coded base check matrix for code rate 1/2 and code block size 2000. Expanding factor: .
[image:]

The coded base check matrix for code rate 2/5 and code block size 1000. Expanding factor: .

[image:]

The expanding factors for information block length of [100, 400, 1000, 2000, 4000, 6000, and 8000] are shown as bellow.
	Information Block Lengths (K)
	100
	400
	1000
	2000
	4000
	6000
	8000

	
Expanding Factors ()
	13
	50
	125
	250
	500
	750
	1000

The number of columns & rows of coded base check matrix for code rates of [1/5, 1/3, 2/5, 1/2, 2/3, 3/4, 5/6, 8/9] is shown as bellow.
	Code Rates (R)
	1/5
	1/3
	2/5
	1/2
	2/3
	3/4
	5/6
	8/9

	

Columns ()/ Rows ()
	24 / 16
	24 / 16
	20 / 12
	16 / 8
	12 / 4
	12 / 4
	12 / 4
	12 / 4

Notes:
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]In fact, the base check matrix can be optimized to obtain better performance. For example, by modifying a few elements in the check matrix as following, the error floor is further reduced. The optimal design for LDPC check matrix is FFS.

1
image2.emf
0

2

1

3

Variable Nodes

Check Nodes

2

4

3

501

image43.wmf
kb

oleObject51.bin

image44.wmf
nb

oleObject52.bin

image45.wmf
mb

oleObject53.bin

image46.wmf
kbnbmb

=-

oleObject54.bin
�

�

Systematic Bits

Parity Bits

1st

Retransmission

24

16

image47.emf
kb

nb

mb

oleObject55.bin

oleObject2.bin

image48.wmf
i

mb

D

oleObject56.bin

image49.wmf
()

ii

Rkbkbmb

=+D

oleObject57.bin

image50.wmf
i

mb

D

oleObject58.bin

image51.wmf
kb

oleObject59.bin

image52.wmf
mb

D

oleObject60.bin

image3.wmf
H

oleObject61.bin

image53.wmf
()

iii

Rkbmbkb

=D+D

oleObject62.bin

image54.wmf
mb

oleObject63.bin

image55.wmf
kb

D

oleObject64.bin

oleObject65.bin

image56.emf
kb

nb

mb

R0

R1

△mb2

R2

△mb0

△mb1

△mb0

△mb1

△mb2

oleObject66.bin

oleObject3.bin

image57.emf
nb

mb

R0

R1

△mk2

R2

mb’

△kb1

△kb0

oleObject67.bin

image58.wmf
Kkbz

=´

oleObject68.bin

oleObject69.bin

image59.wmf
8

kb

=

oleObject70.bin

image60.wmf
1

mb

D

oleObject71.bin

oleObject72.bin

image4.wmf
()(n)

mbzbz

´´´

image61.wmf
12

mbmb

D+D

oleObject73.bin

oleObject74.bin

image62.emf
Systematic BitsParity Bits

2

nd

Transmission

3

rd

Transmission

4

th

Transmission

1

st

Transmission

Mother Code

oleObject75.bin

image63.emf
kb

nb

mb

1

st

2

nd

3

rd

△mb1△mb3△mb2△mb4

4

th

oleObject76.bin
�

Information Bits

Padding Bits

Parity Bits

Punctured Bits

Transmitted Code:

Mother Code:

Padding 1

Padding 2

image64.wmf
1

f

oleObject77.bin
�

�

�

0

2

1

3

Variable Nodes

Check Nodes

2

4

3

5

0

1

image65.wmf
2

f

oleObject4.bin

oleObject78.bin
 Base Matrix

Systematic bits

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Rate 1/3 Extended LDPC Base Matrix

Puncturing parity bits

Extending parity bits

-1

0

the matrix part of
the added rows

image66.wmf
1

f

oleObject79.bin

image67.wmf
2

f

oleObject80.bin

image68.wmf
1

f

oleObject81.bin

image69.wmf
2

f

oleObject82.bin

image70.wmf
1

f

image5.wmf
Hb

oleObject83.bin

image71.wmf
2

f

oleObject84.bin

image72.wmf
'/

nbkbR

=

éù

êú

oleObject85.bin
�

�

kb

△mb

basic Matrix

mb

mb

nb

△mb

image73.wmf
'

mbnbkb

D=-

oleObject86.bin

image74.wmf
'

nb

oleObject87.bin

image75.wmf
0

nb

oleObject5.bin

oleObject88.bin

image76.wmf
'

nb

oleObject89.bin

image77.wmf
0

nb

oleObject90.bin

image78.wmf
'0

nbnb

=

oleObject91.bin

image79.wmf
'/

zKkb

=

éù

êú

oleObject92.bin

oleObject93.bin
�

�

Systematic Bits

Parity Bits

1st

Retransmission

24

16

image6.wmf
mbnb

´

image80.wmf
mb

D

oleObject94.bin

image81.wmf
mod

max

1()1

()

()()1

b

ijuniform

b

ijified

bb

ijuniformijuniform

h

h

hzzh

ì

-=-

ï

=

í

êú

´¹-

ï

ëû

î

oleObject95.bin

image82.wmf
'

zkbK

´-

oleObject96.bin

image83.wmf
'

zkb

´

oleObject97.bin

oleObject98.bin

image84.wmf
/

KR

êú

ëû

oleObject6.bin

oleObject99.bin

image85.wmf
max

1000

z

=

oleObject100.bin

image86.wmf
012

nb

=

oleObject101.bin

image87.wmf
500

z

=

oleObject102.bin

image88.png

image89.wmf
250

z

=

oleObject103.bin

image7.wmf
z

image90.png

image91.wmf
125

z

=

oleObject104.bin

image92.png

image93.wmf
'

z

oleObject105.bin

oleObject106.bin

oleObject107.bin

image94.emf

oleObject108.bin
�

oleObject7.bin

image8.wmf
P

oleObject8.bin

image9.wmf
zz

´

oleObject9.bin

image10.wmf
()

knbmbz

=-´

oleObject10.bin
�

Information Bits

Padding Bits

Parity Bits

Punctured Bits

Transmitted Code:

Mother Code:

Padding 1

Padding 2

image11.wmf
nnbz

=´

oleObject11.bin
�

�

Mother Code:

Transmitted Code:

Information Bits

Padding Bits

Parity Bits

Punctured Bits

Padding 1

Padding 2

z

z

z

image12.wmf
Rkn

=

oleObject12.bin
�

�

�

1

0

2

3

Variable Nodes

Check Nodes

2

4

3

5

0

1

1

0

1

0

0

1

0

1

0

1

1

0

1

0

0

1

1

0

1

0

0

1

0

1

H =

image13.wmf
ij

hb

oleObject13.bin
�

�

�

0

2

1

3

Variable Nodes

Check Nodes

2

4

3

5

0

1

image14.wmf
Hb

oleObject14.bin
 Base Matrix

Systematic bits

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Rate 1/3 Extended LDPC Base Matrix

Puncturing parity bits

Extending parity bits

-1

0

the matrix part of
the added rows

image15.wmf
zz

´

oleObject15.bin

image16.wmf
ij

hb

P

oleObject16.bin

image17.wmf
H

oleObject17.bin

oleObject18.bin

image18.wmf
00010(1)

10111(1)

(1)0(1)1(1)(1)

nb

nb

mbmbmbnb

hbhbhb

hbhbhb

hbhbhb

-

-

éù

êú

êú

=

êú

êú

êú

ëû

Hb

L

L

LLLL

L

oleObject19.bin

oleObject20.bin

image19.wmf
0(1)

0001

1(1)

10

11

(1)0(1)1(1)(1)

nb

nb

mbmbmbnb

hb

hbhb

hb

hb

hb

hbhbhb

-

-

éù

êú

êú

=

êú

êú

êú

ëû

PPP

PPP

H

PPP

L

L

LLLL

L

oleObject21.bin

image20.wmf
1

ij

hb

==-

oleObject22.bin

oleObject23.bin

oleObject24.bin

oleObject25.bin

image21.wmf
P

oleObject26.bin

image22.wmf
ij

hb

oleObject27.bin

oleObject28.bin

oleObject29.bin

image23.wmf
0100

0010

0001

1000

éù

êú

êú

êú

=

êú

êú

êú

ëû

P

L

L

LLLLL

L

L

oleObject30.bin

oleObject31.bin

image24.wmf
max

1000

z

=

oleObject32.bin

image25.png

image26.wmf
(,)

=

cxb

oleObject33.bin

image27.wmf
011

(,,,)

k

xxx

-

=

x

L

oleObject34.bin

image28.wmf
011

(,,,)

nk

bbb

--

=

b

L

oleObject35.bin

image29.wmf
b

oleObject36.bin

image30.wmf
nk

-

oleObject37.bin

image31.wmf
x

oleObject38.bin

image32.wmf
k

oleObject39.bin

image33.wmf
[,]

=

cxb

image1.emf
0

2

1

3

Variable Nodes

Check Nodes

2

4

3

501

1

0

1

0

0

1

0

1

0

1

1

0

1

0

0

1

1

0

1

0

0

1

0

1

H =

oleObject40.bin

image34.wmf
nnbz

=´

oleObject41.bin

image35.wmf
kkbz

=´

oleObject42.bin

image36.wmf
kbnbmb

=-

oleObject43.bin

image37.wmf
v

oleObject44.bin

image38.wmf
1

0

(())(())0,1,,(1)

ij

kb

hb

TT

j

ijimb

-

=

=´=-

å

vPx

L

oleObject1.bin

oleObject45.bin

oleObject46.bin
�

�

kb

△mb

basic Matrix

mb

mb

nb

△mb

image39.wmf
0()

()mod

((0))((0))

nbmb

zhbz

TT

-

-

=´

bPv

oleObject47.bin

image40.wmf
()

1

()mod

(())(())(())1,2,3,,(1)

inbmbiij

kbi

zhbzhb

TTT

jkb

iijkbimb

-+

+-

-

=

æö

=+´-=-

ç÷

èø

å

bPvPb

L

oleObject48.bin

image41.wmf
[,]

=

cxb

oleObject49.bin

image42.wmf
Rkbnb

=

oleObject50.bin

