3GPP TSG RAN WG1 Meeting #85 	 R1-164184
Nanjing, China, 23-27 May 2016
[bookmark: Source]Agenda item:	7.1.5.1
Source: 	Intel Corporation
Title: 	Polar code design for NR
[bookmark: DocumentFor]Document for:	Discussion

1. Introduction
It was agreed in April 2016 that Polar Codes be considered as a candidate for channel coding in NR. In this contribution, we give a brief overview of polar codes, discuss design principles, decoding algorithms, codeword and data length flexibility. Constructions for evaluations are given in a companion contribution [1] , complexity issues are discussed in [2], and performance comparison with other coding schemes is shown in [3].

2. Polarization principle
Polar codes are constructed based on channel polarization principle. It refers to the fact that a set of identical channels (i.e., many uses of the same channel over time) can be converted into a set of channels that consists only of almost perfect channels or almost useless channels. This conversion can be done in a simple recursive manner, as follows: See Figure 1a, where two identical copies of a binary-input channel are converted to two new channels and . Since is a 1--1 transform, it follows that Some thought also shows that i.e. is a worse channel than , and is better. In that sense, the channel is polarized. The idea is then to enhance polarization by applying the same 2-by-2 transform to and and so. This is shown in Figure 1b, where four new bit-channels . Even further channel polarization can be attained by applying this procedure recursively, to get distinct channels. When is large, the bit-channels become either almost perfect, ie , or almost useless ie . Moreover, the fraction of almost perfect bit-channels approaches the channel capacity

[image:] [image:]
 (1a)						(1b)
Figure 1: Basic polarization kernel (1a) and 4-by-4 polarization transform in (1b)
3. Polar coding
From an encoding perspective, polar coding consists of placing data bits in the good bit-channel positions , and fixed pre-known bits (similar to zero-padding, say) in the bad bit-channel positions i, the latter are also known as frozen bits. Thus, in polar code design, a key aspect is to identify the locations of the data bits and frozen bits. Although the positions of the good bit-channels depend on the underlying channel P, these positions are in general nested. That is, if is a worse channel than (for example, if is a low-SNR Gaussian channel and is a high-SNR channel), then the set of good bit-channels under will be a subset of the good bit-channels under This implies that polar code designs for various channel conditions can be represented in a compact manner. Similarly, polar codes designed for a low-order modulation under a Gaussian channel can be used for high-order modulations, fading, or frequency-selective channels without much loss in performance.
Construction algorithms have been given in [4] [5] [6]. In the companion contribution ([1]), constructions based on the method in [5] are given for evaluation. The performance evaluations are shown in [3] which indicates that polar coding with list decoding can perform as well as other coding schemes (turbo/LDPC) and in some cases it can outperform other coding schemes.
4. Decoding
Several decoding algorithms are possible with polar codes, namely the successive cancellation decoder, belief propagation as well as list decoding.
Successive cancellation (SC) decoding : This is polar codes' native decoding algorithm. The input bits are decoded in succession. SC decoding tracks a single decoding path and at each step adds another decision to that path by computing a metric for the next bit value. The data bits are decided based on an LLR computation (conditioned on the channel outputs and the previously decided bits) while treating frozen bits similar to zero-padding (e.g. frozen bit LLR is set to a large positive value).
For all rates less than channel capacity, the block error probability under SC decoding vanishes like [7]. This guarantee is for explicit code constructions (as long as the best bit-channel positions are known, and not only for ensembles of codes). Moreover, it has been proven that polar codes can have no error floors [8]. On the other hand, for coding lengths that are typical in wireless communication (e.g. 100 to 10,000 bits), polar codes' error performance under SC decoding is inferior to e.g. turbo/LDPC codes.
List decoding ([9]): This is a generalization of SC decoding. List decoding is based on the same principle as SC, but instead tracks several decoding paths simultaneously. In each step, it calculates a likelihood-ratio for all single bit extensions of the existing paths, and discards those that have low path metrics. At the end of decoding, the path with the highest metric can be accepted as corresponding to a likely estimate of data bits.
List decoding improves performance of polar codes based on some constructions such as the algorithm in [4]. However, the improvement is not sufficient to close the gap to other codes. It was found that the performance of list decoding can be greatly improved by attaching a CRC to the data bits before polar encoding. This was based on the observation that very often the correct decoding path would be in the final list, but would not necessarily have the highest path metric always. Thus, CRC check helps in selecting the correct decoding path.
We observed that the necessity of the CRC to improve performance is construction-specific. That is, not all constructions need the CRC to achieve excellent performance. In an accompanying contribution [1] we show polar code constructions that can perform well under list decoding without CRC attachment. A sample performance comparison is shown in Figure 2, for rate-1/2, codeword length of 2048, for different list sizes. The two red curves are with the construction given in companion contribution [1], while the black curves use constructions in [4]. Note that in typical EMBB scenarios, there may be CRC introduced e.g. at code block level for early stop of decoding, and such CRC can also be used for pruning the list in polar decoding, but for small payload sizes, not requiring a CRC for list pruning might be an attractive choice from an overhead perspective.
[image:]
[bookmark: _Ref450324413]Figure 2: Comparison of polar code constructions under various list/CRC combinations. Black curves correspond to codes constructed using the method in [4], red curves are for Intel’s designs in [1]. N=2048.
5. Data block size
A key property of polar codes is their extreme flexibility in the code rate. Polar codes of all rates at a given codeword length can be encoded using the same circuitry (similarly, decoded using same circuitry), and the supported code rate can be: .
Recall that a polar code construction of a given rate and length consists simply in a set of bit indices where data bits may be placed. Conveniently, these index sets can be chosen in a nested fashion. That is, an entire family of polar codes of lengths N and all rates can be represented by a single length- vector that specifies the bit index order in which data should be placed. This construction and representation method is described in the accompanying contribution [1].
6. Codeword size
Standard polar codes' flexibility in codeword lengths is limited. In particular, their native codeword lengths are of the form for integer values of . This can be addressed by shortening. In particular, if data bits are to be encoded to a codeword of length , then encoder inputs can be marked "shortened" and their values set to predetermined values (for example, all zeros). Shortened bit indices can be chosen in a way that encoder output bits are only a function of shortened bits. For example, one can always mark the last encoder bits “shortened”, since the last S bits in the output are only a function of the last encoder inputs.
For example, in Figure 3, if the desired codeword length is 5 and thus 3 bits are to be shortened, then the encoder can set , which would imply . Since the receiver knows the shortened bit values, it can initialize the corresponding output LLRs to suitable values (in principle,). This eliminates the need to transmit those output bits, hence the codeword can also be shortened. Then, from the remaining input bits, can carry the data bits, and the remaining can be frozen bits.
Polar codes can be specifically constructed for a non-standard (i.e. non-power of 2) codeword by using a modified version of standard construction algorithms. If the required set of codeword lengths is not too large, a separate construction for every codeword length can be designed. If more granularity in codeword lengths is needed, then data bit indices can be selected from an already existing construction. For example, in the nested representation method mentioned above, if the last bits are to be shortened, then the data bits can be place in the best positions excluding the last positions. The non-standard length polar code performance plots given in the accompanying contribution [1] were obtained using this principle.

Figure 3. An (8,K) Polar code. LHS is input bits (K bits carry data, 8-K are frozen,), and RHS is codeword.

7. HARQ
Since polar decoders are initialized with channel LLRs, implementing HARQ with chase-combining (HARQ-CC) with polar codes is straightforward. In retransmissions, the codeword can be resent either in whole or in part, and the corresponding LLRs combined with previous LLRs in each decoding attempt. For HARQ with incremental redundancy (HARQ-IR), internal encoder bits can be used in retransmissions, and easily incorporated in most decoding algorithms (SC, list, BP). These are bits that are computed in the course of encoding but do not appear in a standard polar codeword. A polar encoder consists of stages, and there are bits in each stage that can be used to add incremental redundancy. This aspect can be studied further.
8. Conclusion
We give an overview of polar codes design principles, codeword size/information block size aspects, as well as support of different code rates. We propose to further study such aspects of polar coding.
References
[1] 	R1-164185 Polar code constructions for evaluations, Intel Corporation, RAN1 #85
[2] 	R1-164182 Comparison of Coding Schemes for NR, Intel Corporation, RAN1 #85
[3] 	R1-164186 Performance evaluation of coding schemes for NR, Intel Corporation, RAN1 #85
[4] 	I. Tal and A. Vardy, "How to construct polar codes," IEEE Trans. on Information Theory, 2013.
[5] 	E. Sasoglu, Polarization and Polar Codes, now Publishers, 2012.
[6] 	P. Trifonov, "Efficient design and analysis of polar codes," IEEE Trans. on Communications, 2012.
[7] 	E. Arikan and E. Telatar, "On the rate of channel polarization," in IEEE ISIT, 2009.
[8] 	M. M., R. Urbanke and S. H. Hassani, "Unified scaling of polar codes: Error exponent, scaling exponent, moderate deviations, and error floors," in IEEE ISIT, 2015.
[9] 	I. Tal and A. Vardy, "List decoding of polar codes," IEEE Trans. on Information Theory, 2013.
[10] 	E. Arikan, "Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels," IEEE Trans. on Information Theory, 2009.
[bookmark: _GoBack]
4

image5.png

image1.tmp
Pr:ur — 190

Py ug — y1yaun

image2.tmp

image3.tmp
BLER

Rate=1/2

—— L=1(sC)
—— L=
—<4— L=2+CRC16
—— L=22 (New)
—#— L=8 (New)

10°

102

104

1 12 14 16 18 2 22 24 26 28 3
SNR (dB)

image4.tmp

