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Introduction
At carrier frequency above 6 GHz, phase noise becomes significant and could result in performance degradations if not considered properly. Careful attention to the system design is needed to mitigate this effect. In the Chairman’s Notes of the RAN1 meeting #84bis [1], it was agreed that:
· All companies are requested to analyze/evaluate following aspects
·  Realistic phase noise
In this contribution, we review some RF circuit configurations, discuss the RF material properties and outline a phase noise model to be considered and utilized for the design and evaluation of the new radio in the bands above 6 GHz.
[bookmark: _Ref450231479]General Considerations on Phase Noise Model
In several previous 3GPP submissions, different phase noise models have been considered, including: one-pole-one-zero model [2], one-pole model [3], phase-locked-loop (PLL) based model [4] and others [5]. To better understand the modelling of phase noise, the configurations of RF circuits and the fabrication methods and materials need to be taken into consideration. 
Configuration of RF Circuits
For the new radio in bands above 6 GHz, a practical design approach is to utilize a large antenna array, with significant beam-forming gain to overcome the path loss. Such an antenna array driven by multiple RF chains has the following advantages:
1. To form multiple beams and transmit towards different users with spatial division;
2. To transmit multiple streams towards a single user using MIMO transmission;
3. To overcome the limitation on the maximum number of antenna elements supported by a single chip.
The structure of the RF circuitry used to drive the antenna array becomes important when considering the effects of phase noise. Figure 1 illustrates a practical antenna array and driver configuration with a common oscillator driving separate multiplier units for each antenna grouping. 


[bookmark: _Ref449538205]Figure 1. Multiple partially coherent RF-chains sharing a common oscillator but different multipliers
This is a partially coherent RF structure with a shared common oscillator but with different multipliers for each group of antenna elements. In theory, a multiplier with a factor of N degrades the phase noise by 20 x log10(N) (dB).  Overall, the output phase noise level depends on the performance of the common oscillator and the multiplier factor (N). This configuration has been discussed also in the IEEE 802.11ay task group [6]. In the arrangement depicted in Figure 1, the major component of the phase noise from the oscillator will be common to different RF chains with the addition of independent additive noise introduced by the multipliers. The following advantages are achieved by such a RF structure:
· Reduced circuit cost and feeder loss [7] with multiple RF chains sharing one low-frequency oscillator but different multipliers;
· Maintaining some correlation among the phase noise of the different RF chains which may facilitate some phase noise suppression at the receiver side. 
With these advantages, we suggest the following observations:
Observation 1: RF structures with partially coherent phase noise (such as the one depicted in Figure 1) should be considered, at least for the BS side.
Observation 2: A partially coherent phase noise model should be considered in the design and evaluation of the new radio in the bands above 6 GHz.
[bookmark: _Ref450232044]Fabrication Methods and Materials
While there are many different fabrication methods, the most common fabrication materials are CMOS, GaAs, SiGe and GaN. With a review of the state of the art [8]-[25], a summary on the phase noise level achieved by different fabrication methods and materials is given in Figure 2.  From this it can be seen that:
Observation 3: For 30GHz band, the typical phase noise level measured at 1 MHz offset is from -114 to -93 dBc/Hz, while that for 70 GHz band is from -108 to -81 dBc/Hz.
While GaAs-based devices can provide a lower phase noise level, it is still expensive and power-consuming. The CMOS-based devices are available at lower cost and have less power consumption. Taking the cost and power constraint at the UE side into consideration, it appears reasonable to assume CMOS-based design for the UE side. On the other hand, for the BS side, GaAs-based design may be assumed.


[bookmark: _Ref449633156]Figure 2. A brief summary of the phase noise level achieved by different fabrication methods and materials
Observation 4: The phase noise model should consider constraints on the cost and energy consumption, especially for the UEs, when using various technologies.
Proposed Model and Parameters
As discussed in Section 2, it is beneficial to use a RF structure with partially coherent phase noise and practical materials for the UE and BS. The proposed detailed phase noise modelling and parameters are outlined further in this section. 
[bookmark: _Ref450473938]Proposed Model
In the time domain, the phase noise of the i-th RF chain in Figure 1 can be expressed as
[bookmark: eq1]	 	
where  is the independent additive noise at the i-th RF chain brought by the multiplier.  is a randomly generated, but constant, phase offset of the i-th RF chain.  is the coherent component, which can be interpreted as the output of the oscillator with a perfect multiplier, the PSD of which will be described in the next subsection.
Here  is employed to model the white and flicker noise in the multipliers [26]. As shown in Figure 3, the PSD of  can be described by two parameters, the corner frequency  and the noise floor at infinity , where a typical value of  is 10kHz and  will be described in the next subsection.
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[bookmark: _Ref450649175]Figure 3. Typical PSD of additive noise from multipliers
As for how many partially coherent phase noise should be modeled, given the numbers of transmit and receive antenna elements (up to 256*32 @ 30 GHz and 1024*64 @ 70 GHz), {4, 8} and {2, 4} would be reasonable working assumptions for the BS and UE side, respectively.
Suggested Parameters 
In this contribution, we utilize the PLL-based phase noise model defined in [4] to express the phase noise experienced at each RF chain, i.e.,  in eq. ⑴. To be specific, the PSD of the phase noise is characterized by:
[bookmark: eq2]	 	
where 
[bookmark: eq3]	 (dB) 	
[bookmark: eq4]	 (dB) 	
FOM is the figure of merit,  is the carrier frequency and P is the consumed power. After reviewing the recent literature [27]-[35], based our expectation for the phase noise level achievable with reasonable cost and power consumption, we propose to consider the following parameters for the phase noise model at the UE (CMOS-based) and BS (GaAs-based) side, respectively (see Table 1): 

[bookmark: _Ref449539696][bookmark: _Ref449538510]Table 1. Parameters for proposed phase noise models
	
	Model 1, UE, Loop BW = 187kHz
	Model 2, BS, Loop BW = 112kHz

	
	REF clk
	PLL
	VCO V2
	VCO V3
	REF clk
	PLL
	VCO V2
	VCO V3

	FOM
	-215
	-240
	-175
	-130
	-240
	-245
	-187
	-130

	fz
	Inf
	1.00E+04
	50.30E+06 
	Inf
	Inf
	1.00E+04
	8.00E+06 
	Inf

	P (mW)
	10
	20
	20
	10
	20
	50

	k
	2
	1
	2
	3
	2
	1
	2
	3



For a single RF chain, the PSD of the proposed phase noise models at both UE and BS side for 30 GHz and 70 GHz are depicted in Figure 4. Other companies’ proposals (scaled to the target frequency) [2]-[5] are also shown in these diagrams for reference. As discussed in Section 2.2, for the BS side, the GaAs-based model could be applied to approximate the relatively lower level of phase noise. Similarly, to support low-cost and energy-efficient devices, the CMOS-based model appears as a more appropriate assumption for the UE side. For instance, as can be seen in Figure 4 and Table 1, while a low phase noise level can be achieved by GaAs, the power consumption is also higher. 
To facilitate the generation of multiple partially coherent phase noise, we point out that the noise floor at infinity  in Figure 3 and Figure 4 is frequency-dependent and can be read from the scaled PSD. Furthermore, the coherent component  in Eq. ⑴ can be generated by removing the noise floor in Figure 4 and extending the curve to infinity, maintaining the same slope.
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 [image: ]
[bookmark: _Ref449538907]Figure 4. PSD of proposed phase noise model at both UE and BS side ()
In line with the above observation on the variability of devices performance it seems that any phase noise model falling in the range between the models proposed for UE and BS in Table 1 would be a reasonable working assumption. 
Proposal 1: The phase noise models described in Table 1 are adopted for the design and evaluation of the new radio for above 6GHz.

Conclusion
Based on the discussions in this paper, for the phase noise model above 6 GHz, we have the following observations and proposal:
Observation 1: RF structures with partially coherent phase noise (such as the one depicted in Figure 1) should be considered, at least for the BS side.
Observation 2: A partially coherent phase noise model should be considered in the design and evaluation of the new radio in the bands above 6 GHz.
Observation 3: For 30GHz band, the typical phase noise level measured at 1 MHz offset is from -114 to -93 dBc/Hz, while that for 70 GHz band is from -108 to -81 dBc/Hz.
Observation 4: The phase noise model should consider constraints on the cost and energy consumption, especially for the UEs, when using various technologies.
Proposal 1: The phase noise models described in Table 1 are adopted for the design and evaluation of the new radio for above 6GHz.
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