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Introduction
The following was agreed in the email discussion started in RAN1#74 given by “[74-08] E-mail discussion on 3D Coordinate System”
· Retain the ability to model mechanical downtilt
· The content of A.2.1.6 from TR 36.814 is included in the 3D channel model TR 36.873
· The derivation of the equations 1-5 given in A.2.1.6 of TR 36.814 to be introduced in an informative section of TR 36.873 
· TP to be prepared later
The TP given below follows this conclusion.  

Note that the section on Polarized Antenna Modeling that was originally included in TR36.814 (marked for deletion below) is being replaced with a more general derivation that is marked in yellow highlights.  Note that this more general derivation reduces to the derivation originally included in TR36.814 if 
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Eq. 1B
which matches the formulas in the original derivation.  Note the definition of 
[image: image5.wmf]z

 is being changed so that 
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 now corresponds to a purely vertically polarized antenna.  In the appendix, we present examples showing the effect of using the more general derivation rather than the original derivation.  
Text Proposal
The text below is copied from TR 36.814 section A.2.1.6 with modifications shown by change marks.
Start of text proposal –
A.X Antenna gain for a given bearing and downtilt angle

A.X.X
Polarized antenna modelling




















In case of polarized antenna elements assume 
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 is the polarization slant angle where 
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 degrees corresponds to a purely vertically polarized antenna element and 
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degrees correspond to a pair of cross polarized antenna elements. Then the antenna element field components in the zenith polarization and in the azimuth polarization according to a global coordinate system defined in Figure A.X.X, are given by
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Eq. 1A

where 
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. Note that the zenith and azimuth field components 
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 are defined in terms of the spherical basis vectors 
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 respectively as shown in Figure A.X.X. 
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 are the field components in the local coordinate system. For a single polarized antenna we can write 
[image: image31.wmf](

)

)

'

,

'

(

'

,

f

q

f

q

q

A

F

=

¢

¢

¢

 and 
[image: image32.wmf](

)

0

,

=

¢

¢

¢

f

q

f

F

 where 
[image: image33.wmf])

'

,

'

(

'

f

q

A

is the 3D element antenna gain pattern as a function of azimuth angle 
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 and zenith angle 
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 in the local coordinate system. 
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Figure A.X.X
Definition of spherical angles and spherical unit vectors in a Cartesian coordinate system, where
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is the given direction, 
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are the spherical basis vectors.
A.X.X
Antenna gain for a given direction and mechanical tilt angle

A global coordinate system with Cartesian coordinates (x,y,z)  and a local (“primed”) coordinate system with Cartesian coordinates (x’,y’,z’) are defined with a common origin, with the y’-axis being parallel to the y-axis; that is, the x-axis of the global coordinate system, should be aligned with the pointing direction of the sector
. The global coordinate system is oriented with its z-axis along a vertical direction, thus having its xy-plane coinciding with a horizontal plane, and all directions in space (angles of arrival and departure) are defined in the global coordinate system angular coordinates and , see Figure A.2.1.6.1-1. 

Assume that an antenna is installed with the antenna aperture normal direction (and antenna main beam peak for a conventional sector antenna) in the xz-plane and that the antenna radiation pattern is defined in terms of angles 
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and 
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 in the local coordinate system, with the local coordinate system antenna-fixed. 

Mechanical tilt is modeled as a rotation of the antenna-fixed coordinate system around the y-axis. For zero mechanical tilt the antenna-fixed coordinate system coincides with the global coordinate system. Conventionally, for sector antennas with cylindrical shape, the antenna radiation pattern defined in the antenna-fixed coordinate system is measured with the antenna cylinder axis installed to coincide with the z'-axis of the antenna-fixed coordinate system. Note that electric tilt, and hence beam pointing direction, does not in general affect the choice of antenna-fixed coordinate system.

By rotating the local coordinate system with respect to the global coordinate system the same effect as mechanical tilting is attained. Since the antenna pattern is defined in the local coordinate system, which has been rotated with respect to the global coordinate system, a transformation must be performed to allow evaluation of the tilted antenna pattern as a function of coordinates in the global coordinate system. This transformation relates the spherical angles (
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) in the global coordinate system to spherical angles (
[image: image44.wmf]'

q

,
[image: image45.wmf]'

f

) in the local (antenna-fixed) coordinate system and is defined as follows:
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where 
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 is the mechanical tilt angle around the y-axis as defined in Figure A.2.1.6.2-1.


Having only the total gain pattern 
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in the local system, the total gain in the global 
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with 
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given by (1) and (2).
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Figure A.2.1.6.2-1
Definition of angles and unit vectors when the local coordinate system has been rotated an  angle 
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 around the y-axis of the global coordinate system.

For polarized fields a transformation of the field components is needed, in addition to the coordinate transformation. For a mechanical tilt angle 
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, the global coordinate system field components 
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 are calculated from the field components 
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 of the radiation pattern in the local (antenna-fixed) coordinate system as 
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where 
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 are defined as in (1) and (2), and 
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 is defined as:
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As an example, in the horizontal cut, i.e., for 
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, equations (1), (2) and (5) become
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The notation 
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, used below, should be interpreted as the field components for the specific
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 that is given by the direction of the propagation; that is, the angle between the global z-axis and the line connecting the site antenna and the UE.












-End of text proposal-

1. Further details on antenna gain for mechanical tilt angle (for the informative part of the TR)

Start of text proposal - 
The antenna gain calculation for a specified mechanical downtilt derived in section A.x.x. is a simplification of a general antenna rotation in 3D space (it assumes that the x-axis is aligned with the pointing direction of the sector and applies a rotation about the y-axis in order to achieve a specified downtilt). Any arbitrary 3-D orientation can be specified by at most 3 elemental rotations, and following the framework of A.x.x, a series of rotations about the z, 
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axes are assumed here, in that order. The x, y and z axes refer to the GCS. The dotted and double-dotted marks indicate that the rotations are intrinsic, which means that they are the result of one (() or two ((() intermediate rotations. In other words, the 
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 axis is the original y axis after the first rotation about z, and the 
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 axis is the original x axis after the first rotation about z and the second rotation about 
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. A first rotation of ( about z sets the antenna bearing angle (i.e. the sector pointing direction). The second rotation of ( about 
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 sets the antenna downtilt angle. Finally, the third rotation of ( about 
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 sets the antenna roll angle. The orientation of the x, y and z axes after all three rotations can denoted as 
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. These triple-dotted axes represents the final orientation of the LCS, and for notational purposes denoted as the x’, y’ and z’ axes. The elemental rotations are depicted in Figure AAA, where ( and ( are assumed to be zero only for simplicity of the illustration (causing several of the intermediate axes to remain unchanged).
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Figure AAA

In order to establish the equations for transformation of the coordinate system and the polarized antenna field patterns between the GCS and the LCS, it is necessary to determine the composite rotation matrix that describes the transformation of point (x, y, z) in the GCS into point (x’, y’, z’) in the LCS. This rotation matrix is computed as the product of three elemental rotation matrices. The matrix to describe rotation about z-y”-x' by ((, (, (), respectively and in that order is defined in Equation AAA.
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Eq. AAA

The reverse transformation is given by the inverse of R, which is also equal to the transpose of R since it is orthogonal.


[image: image106.wmf](

)

(

)

(

)

T

Z

Y

X

R

R

R

R

R

=

-

-

-

=

-

a

b

g

1


Eq. AAB
The simplified forward and reverse composite rotation matrices are given in Equations AAC and AAD.
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Eq. AAC
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Eq. AAD
These transformations can be used to derive the angular and polarization relationships between the two coordinate systems.  As in section A.2.1.6.2, the convention is followed that “primed” angles refer to the LCS frame of reference, and angles not designated as “primed” refer to the GCS frame of reference.

In order to establish the angular relationships, consider a point (x, y, z) on the unit sphere defined by the spherical coordinates ((=1, (, (), where ( is the unit radius, ( is the zenith angle measured from the +z-axis, and ( is the azimuth angle measured from the +x-axis in the x-y plane.  The Cartesian representation of that point is given by equation AAE.
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Eq. AAE
The zenith angle is computed as 
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 are the Cartesian unit vectors.  If this point represents a location in the GCS defined by ( and (, the corresponding position in the LCS is given by 
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, from which local angles (’ and (’ can be computed.  The results are given in equations AAF and AAG.
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Eq. AAF
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Eq. AAG

These formulae relate the spherical angles ((, () of the GCS to the spherical angles ((’, (’) of the LCS given the rotation operation defined by the angles ((, (, ().  

Let us denote the polarized field components 
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 in the LCS. Then they can be related by equation AAH.
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Eq. AAH

In this equation, 
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 represent the spherical unit vectors of the GCS, and 
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are the representations in the LCS.  The forward rotation matrix R transforms the LCS unit vectors into the GCS frame of reference.  These pairs of unit vectors are orthogonal and can be represented as shown in Figure AAB.
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Figure AAB

Assuming an angular displacement of ( between the two pairs of unit vectors, the rotation matrix of equation AAH can be further simplified.
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Eq. AAI

The angle ( can be computed in numerous ways from equation AAI, with one such way approach being 
[image: image129.wmf](

)

(

)

(

)

(

)

)

,

ˆ

,

ˆ

,

ˆ

,

ˆ

arg(

f

q

q

f

q

f

f

q

q

f

q

q

y

¢

¢

¢

×

+

¢

¢

¢

×

=

R

j

R

.  The dot products are readily computed using the Cartesian representation of the spherical unit vectors.  The general expressions for these unit vectors are given in equations AAJ and AAK. 
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Eq. AAJ
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Eq. AAK

The angle ( can be expressed as a function of mechanical orientation ((, (, () and spherical position ((, (), and is given in equation AAL.
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Eq. AAL
It can be shown that
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Eq. AAM
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Eq. AAN

Finally, it is noted that equations AAF, AAG and AAL reduce to equations (1), (2) and (5) of section A.x.x if both ( and ( are zero.

-End of text proposal-
Appendix
[Note: This appendix is not part of the Text Proposal.] 

In this appendix, we present examples showing the result of using the more general derivation for the polarization modelling as described in the introduction.  For a single polarized antenna, we have 
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is the 3D element antenna gain pattern as a function of azimuth angle 
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 and zenith angle 
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 in the local coordinate system.  The original derivation can then be replaced by: 
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              (Eqn Appendix-2b)
where ζ = polarization angle (e.g. +/- 450), θ (zenith angle), φ (azimuth angle).  When θ=900, φ=0, then this derivation reduces to the original derivation.  
Figure 1 shows the effects of the polarization loss and the antenna element pattern response as a function of the azimuth angle for the polarization equations for an elevation angle of 90°.  The Left plot is for equations (Eqn Appendix-1), (Eqn Appendix-2a) and (Eqn Appendix-2b).  The Right plot is for the original derivation in 36.814 (shown in the text marked for deletion in the TP above).  The receiver is placed at a given azimuth angle broadside to the transmit antenna.  The transmit antenna is a single polarization with a beamwidth of 65° and a 30dB front-to-back ratio.  The receiver has co-located cross-polarized antennas.  Figure 2 shows the same situation where the effects are plotted as a function of the elevation angle for an azimuth angle of 0°.  Note from these two figures that there is a significant difference between the more general derivation and the original derivation.  
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Figure 1 Effect of antenna pattern and polarization loss versus azimuth angle with elevation angle = 90°: Left = general derivation.  Right = original derivation. 
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Figure 2 Effect of antenna pattern and polarization loss versus elevation angle with azimuth angle = 0°: Left = general derivation.  Right = original derivation. 
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� Hence, an antenna with� EMBED Equation.3 ���degrees corresponds to a purely horizontally polarized antenna.

� Note that the global coordinate system should not be interpreted as a system wide global coordinate system, but a coordinate system centered at the site antenna, with the xy-plane parallel to horizontal plane.
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