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1. Introduction 

This contribution addresses the question of how to best model depolarization when propagation 

occurs in both elevation and azimuth.  In 2D channel models a depolarization matrix models 

vertically polarized waves being rotated to horizontal polarization and vice versa. When 

propagation additionally occurs in elevation, waves leaving the transmit antennas are no longer 

polarized in vertical and horizontal direction but instead are polarized along the spherical unit 

vectors   and  .  The meaning of the V-to-H and H-to-V depolarization used in 2D models 

then becomes unclear. In order to clearly and accurately model polarization states in the 3D 

channel model, a new description of the depolarization process is required. Two alternatives for 

doing so are proposed in this contribution.   

The first of the alternatives may be expressed in the framework proposed in [1] which represents 

the 3D depolarization process by an equation of the form  
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evaluated at arrival angle a in elevation and a  in azimuth and 
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are the transmit antenna patterns in the  and  directions evaluated at the departure angle d in 

elevation and d  in azimuth. 

2. Modelling depolarization with elevation and azimuth propagation 

The 2D channel model in [2] includes modelling of depolarization due to scattering and 

diffraction processes.  In two dimensions, transmitted and received rays are naturally 

decomposed into vertical and horizontal polarizations.  For NLOS propagation the depolarization 

process of a single subpath is modeled according to  
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where 
,V t

E  and 
,H t

E  are the transmitted electric fields in the vertical and horizontal directions 

and similarly for the received electric fields 
,V r

E  and 
,H r

E .  The XPR ratio  and phases terms 

xx  are defined in Sec. B.1.2.2.1 of [1].   

The question then becomes how should this be modified, if at all, to take into account 

propagation in elevation?  Two alternatives will be described below. 

Alternative 1 

The most straightforward extension is to replace vertical polarization with polarization in the   

direction and horizontal polarization with polarization in the   direction.  This is illustrated in 

Figure 1 for a single subpath polarized in both   and   directions at the transmitter. Each field 

component of the wave propagating toward the scatterer is rotated and phase and added to a 

phase rotated version of the orthogonal field to form the field component exiting the scatterer. 

Note that 
a
  and 

a
  are different than   and  , the former being defined in the coordinate 

system centered at the receiver while the latter is referenced to the coordinate system centered at 

the receive antenna.  In equation form this may be expressed as,  
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Figure 1: Modelling depolarization with propagation in elevation as well as azimuth.  Scattering and 

diffraction processes cause the polarization to become split into ̂  and ̂  directions. The notation ̂  and ̂  

is used are the unit vectors in the coordinate system centered at the scatterer vs. as opposed to   and   

which is centered at the transmitting antenna. 

 

Alternative 2 

It may be argued that the scatterers are typically fixed to the x,y,z coordinate system and 

therefore the scattering and reflection processes should still be calculated according to 2D 

depolarization described in (1).  While vertical and horizontal directions are not defined in 3D 

coordinate systems, strictly interpreting (1) in 3D is possible if conversion to x, y, and z 

components is first performed, followed by phase weighting and mixing of the vertical and 

horizontal components, and finally conversion back to a spherical coordinate system as shown 

Figure 2.  The angles 
sc

 and 
sc

 represent the elevation and azimuth angles of departure 

respectively for the wave leaving the scatterer.  These angles are not related to the angles of 

arrival at the receiver (unlike Alternative 1) but instead are soley a function of the electric fields 

,x r
E , 

,y r
E , and 

,z r
E  which have nothing to do with the randomly drawn angles of arrivals at the 



receiver.  In the Appendix it is shown that 
sc

 and 
sc

 are such that the electric field in the 

direction of propagation is zero.
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Figure 2: Alternative 2 requires mapping the  and  components to x,y,z components followed by 

conversion to V and H.  2D depolarization is then performed and the V and H components are converted 

back to x,y,z and finally back to ˆ and ˆ . 

Figure 3 illustrates a plane wave departing the transmit antenna at an elevation angle of  and 

azimuth angle  with the plane wave having real-valued field components 
,t
E  and 

,t
E .  These 

may be decomposed at the scatterer first into x,y,z components, 
,x t

E , 
,y t

E , and 
,z t
E , and then into 

vertical component 
, ,V t z t z
EE a  and horizontal component 

, , ,H t x t x y t y
E EE a a .  These 

components are mixed in the same manner as in the 2D channel model to yield the scattered 

vertical and horizontal components 
,V r

E  and 
,H r

E  which can be decomposed into x,y,z 

components 
,x r

E , 
,y r

E , and 
,z r
E .  Finally, conversion to spherical coordinates gives the θ̂  and  

̂  components of the electric field observed at the received antenna. 
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 In order to use Alternative 2, the assumption needs to be made the amplitudes of electric fields in the receiver 

coordinate system are equal to those of the scatterer, i.e. ˆ, ,a r r
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Figure 3: In Alternative 2 depolarization is performed in the xyz (V-H) coordinate system which requires a 

transformation of the electric fields in   and   polarizations to the electric fields in the x, y,and z directions.  

The same scattering matrix as used in 2D is then applied and the resultant fields are transformed back into 

̂  and ̂  polarizations.   

The Appendix describes the above steps in more detail and derives an expression which relates 

the transmit field values 
,t
E  and 

,t
E  to the received field values  

,̂r
E  and 

,̂r
E  as a function of 

the elevation angle of departure, , the azimuth angle of departure , , and the azimuth angle of 

departure at the scatterer 
sc

.  The elevation angle of departure at the scatterer, 
sc

 is shown in 

the Appendix to be / 2  for real-valued field values 
2
.  The relationship between 

,t
E ,

,t
E  and 

,̂r
E  and 

,̂r
E  is 
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Discussion 

Comparing  the alternatives, it is clear than Alternative 2 is significantly more complex to 

implement than Alternative 1.  In addition in the special case of a vertically polarized wave being 

transmitted at boresight and elevation of / 2 , the expression for  is undefined requiring 

special treatment for this case such as reverting to the 2D model. In addition since both 

alternatives are heuristic extensions of a 2D depolarization process, it is difficult to justify one 

over the other as being more accurate than the other without some type of analytical basis in 

theory or supporting empirical results.  Without such a basis or results, it is therefore 

recommended that the simpler alternative, Alternative 1 as given in (2), be chosen. 

Proposal 

 Model 3D depolarization according to Alternative 1 (Equation (2)).   

3. Conclusions 
This contribution proposed two alternatives for modelling depolarization when propagation 

occurs in elevation in addition to azimuth. Due to implementation complexity, the first 

alternative which effectively replaces V-to-H and H-to-V depolarization with  -to-  and  -to-

  depolarization is recommended over the alternative of retaining the V/H depolarization 

defined for 2D spatial channel models due to implementation complexity. 
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5. Appendix 

  Calculating the depolarization this way requires two additional steps. First the components of 

the electric field incident at the scatterer must be transformed from  and  coordinates to x,y, 

and z components with the transformation matrix 
,AOD AOD

T :  

 

,
,

,
,

,

,

       

x t
t

y t AOD AOD
t

z t

E
E

E
E

E

T
 (3) 

where  

 

cos cos sin

, cos sin cos

sin 0

T . (4) 

Next, the vertical and horizontal components need to be calculated. The vertical component is 

simply the z component, i.e. 
, ,V t z t z
EE a . The horizontal component on the other hand is 

composed of x and y components and therefore the magnitude of the horizontal component is the 

square root of the sum of the squared magnitudes: 
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where 
,H t

E  is the magnitude of the horizontal component, 
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a  is the unit vector in the direction of the horizontal component, 
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The horizontal component vector, 
,H t

E , is therefore the sum of the fields in the x and y 

directions, i.e., 

 
, , ,H t x t x y t y
E EE a a . 

Using (3) and (4) in the expressions for 
,V t

E  and 
,H t

E  then gives  
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The depolarization matrix, P , is applied to the vertical and horizontal components on the 

transmit side to give the horizontal and vertical components on the receive side, i.e. after 

depolarization according to (1): 
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In order to compute the received components in the ˆ  and ˆ  directions, 
,V r

E  and 
,H r

E  need to 

be converted to components in the x,y,z directions so that the inverse mapping 1 ,
sc sc

T  can 

be applied.  Here the angles 
sc

 and 
sc

 denote the angles of departure at the scatterer.  The 

conversion from 
,V r

E  to 
,z r
E  is straightforward, i.e., 
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 For 
,x r

E  and 
,y r

E however, depolarization affects both the x and y components:  
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Using equations (3) through (6) and (9) through (11) allows 
,x r

E , 
,y r

E , and 
,z r
E  to be expressed 

as a function of  and : 
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One difficulty with this alternative is how to choose the polar and azimuth angles of departure 

from the scatterer, 
sc

 and 
sc

.  These are needed to calculate the inverse transformation 

1
, ,

T

sc sc sc sc
T T .  One constraint comes from the transformation of a vector’s 

components in a rectangular system to components in a spherical system centered on the 

scatterers (hence the new spherical coordinates vectors r̂ , θ̂ , and ̂ ): 
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The electric field must be zero in the r̂  direction and therefore we have the constraint  
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When 
,r

E  and 
,r

E  are real as occurs when the antenna responses are real-valued (the current 

assumption), the above equation has the solutions 
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If we take 
sc

 to be in the interval / 2, / 2 , i.e the first of the two solutions in the set 

above, then we have from (12)  
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Combining (3), (9)-(11), and (13) gives the final result, the relationship between the transmitted 

and received fields expressed in spherical coordinates:  
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