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1. Introduction
This contribution addresses the question of how to best model depolarization when propagation occurs in both elevation and azimuth.  In 2D channel models a depolarization matrix models vertically polarized waves being rotated to horizontal polarization and vice versa. When propagation additionally occurs in elevation, waves leaving the transmit antennas are no longer polarized in vertical and horizontal direction but instead are polarized along the spherical unit vectors 
[image: image1.wmf]q

 and 
[image: image2.wmf]f

.  The meaning of the V-to-H and H-to-V depolarization used in 2D models then becomes unclear. In order to clearly and accurately model polarization states in the 3D channel model, a new description of the depolarization process is required. Two alternatives for doing so are proposed in this contribution.  
The first of the alternatives may be expressed in the framework proposed in [1] which represents the 3D depolarization process by an equation of the form 
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where 
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 are the receive antenna patterns in the 
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 and 
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 directions evaluated at arrival angle 
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in elevation and 
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 in azimuth and 
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 are the transmit antenna patterns in the 
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 and 
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 directions evaluated at the departure angle 
[image: image14.wmf]d
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in elevation and 
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f

 in azimuth.
2. Modelling depolarization with elevation and azimuth propagation
The 2D channel model in [2] includes modelling of depolarization due to scattering and diffraction processes.  In two dimensions, transmitted and received rays are naturally decomposed into vertical and horizontal polarizations.  For NLOS propagation the depolarization process of a single subpath is modeled according to 
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where 
[image: image17.wmf],
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 and 
[image: image18.wmf],
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E

 are the transmitted electric fields in the vertical and horizontal directions and similarly for the received electric fields 
[image: image19.wmf],
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 and 
[image: image20.wmf],

Hr

E

.  The XPR ratio 
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 and phases terms 
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F

 are defined in Sec. B.1.2.2.1 of [1].  

The question then becomes how should this be modified, if at all, to take into account propagation in elevation?  Two alternatives will be described below.

Alternative 1
The most straightforward extension is to replace vertical polarization with polarization in the 
[image: image23.wmf]q

 direction and horizontal polarization with polarization in the 
[image: image24.wmf]f

 direction.  This is illustrated in Figure 1 for a single subpath polarized in both 
[image: image25.wmf]q

 and 
[image: image26.wmf]f

 directions at the transmitter. Each field component of the wave propagating toward the scatterer is rotated and phase and added to a phase rotated version of the orthogonal field to form the field component exiting the scatterer. Note that 
[image: image27.wmf]a

q

 and 
[image: image28.wmf]a

f

 are different than 
[image: image29.wmf]q

 and 
[image: image30.wmf]f

, the former being defined in the coordinate system centered at the receiver while the latter is referenced to the coordinate system centered at the receive antenna.  In equation form this may be expressed as, 
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Figure 1: Modelling depolarization with propagation in elevation as well as azimuth.  Scattering and diffraction processes cause the polarization to become split into 
[image: image33.wmf]q

ˆ

 and 
[image: image34.wmf]f

ˆ

 directions. The notation 
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ˆ

 and 
[image: image36.wmf]f

ˆ

 is used are the unit vectors in the coordinate system centered at the scatterer vs. as opposed to 
[image: image37.wmf]q

 and 
[image: image38.wmf]f

 which is centered at the transmitting antenna.
Alternative 2
It may be argued that the scatterers are typically fixed to the x,y,z coordinate system and therefore the scattering and reflection processes should still be calculated according to 2D depolarization described in Figure 2(1)

 in 3D is possible if conversion to x, y, and z components is first performed, followed by phase weighting and mixing of the vertical and horizontal components, and finally conversion back to a spherical coordinate system as shown (1)

.  While vertical and horizontal directions are not defined in 3D coordinate systems, strictly interpreting  GOTOBUTTON ZEqnNum383636  \* MERGEFORMAT .  The angles 
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 and 
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 represent the elevation and azimuth angles of departure respectively for the wave leaving the scatterer.  These angles are not related to the angles of arrival at the receiver (unlike Alternative 1) but instead are soley a function of the electric fields 
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 which have nothing to do with the randomly drawn angles of arrivals at the receiver.  In the Appendix it is shown that 
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 are such that the electric field in the direction of propagation is zero.
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Figure 2: Alternative 2 requires mapping the 
[image: image47.wmf]q

 and 
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 components to x,y,z components followed by conversion to V and H.  2D depolarization is then performed and the V and H components are converted back to x,y,z and finally back to 
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and 
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.

Figure 3 illustrates a plane wave departing the transmit antenna at an elevation angle of 
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 and azimuth angle 
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 with the plane wave having real-valued field components 
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.  These may be decomposed at the scatterer first into x,y,z components, 
[image: image55.wmf],

xt

E

, 
[image: image56.wmf],

yt

E

, and 
[image: image57.wmf],

zt

E

, and then into vertical component 
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.  These components are mixed in the same manner as in the 2D channel model to yield the scattered vertical and horizontal components 
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 which can be decomposed into x,y,z components 
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.  Finally, conversion to spherical coordinates gives the 
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 and  
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 components of the electric field observed at the received antenna.
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Figure 3: In Alternative 2 depolarization is performed in the xyz (V-H) coordinate system which requires a transformation of the electric fields in 
[image: image68.wmf]q

 and 
[image: image69.wmf]f

 polarizations to the electric fields in the x, y,and z directions.  The same scattering matrix as used in 2D is then applied and the resultant fields are transformed back into 
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 and 
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 polarizations.  
The Appendix describes the above steps in more detail and derives an expression which relates the transmit field values 
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 as a function of the elevation angle of departure, 
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, the azimuth angle of departure ,
[image: image77.wmf]f

, and the azimuth angle of departure at the scatterer 
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.  The elevation angle of departure at the scatterer, 
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 is shown in the Appendix to be 
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.  The relationship between 
[image: image81.wmf],

t

E

q

,
[image: image82.wmf],

t

E

f

 and 
[image: image83.wmf]ˆ

,

r

E

q

 and 
[image: image84.wmf]ˆ

,

r

E

f

 is


[image: image85.wmf]1

22

2

ˆ

1

,

,,

ˆ

,

1

,

001

cos

sincos00

sin

0cossin0

HHHV

HHHV

VHVV

jj

jj

r

tt

sc

r

jj

t

sc

ee

E

EE

ee

E

E

ee

q

qf

f

q

k

q

fak

q

fa

k

F-F

F-F

-FF

éù

éù

êú

-

éù

êú

éù

êú

êú

+

êú

êú

êú

êú

=-

êú

êú

êú

êú

êú

-

êú

êú

ëû

êú

ëû

êú

êú

ëû

ëû


where 
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Discussion

Comparing  the alternatives, it is clear than Alternative 2 is significantly more complex to implement than Alternative 1.  In addition in the special case of a vertically polarized wave being transmitted at boresight and elevation of 
[image: image88.wmf]/2

p

, the expression for 
[image: image89.wmf]a

 is undefined requiring special treatment for this case such as reverting to the 2D model. In addition since both alternatives are heuristic extensions of a 2D depolarization process, it is difficult to justify one over the other as being more accurate than the other without some type of analytical basis in theory or supporting empirical results.  Without such a basis or results, it is therefore recommended that the simpler alternative, Alternative 1 as given in (2)

, be chosen.

Proposal

· Model 3D depolarization according to Alternative 1 (Equation (2)

).  
3. Conclusions
This contribution proposed two alternatives for modelling depolarization when propagation occurs in elevation in addition to azimuth. Due to implementation complexity, the first alternative which effectively replaces V-to-H and H-to-V depolarization with 
[image: image90.wmf]q

-to-
[image: image91.wmf]f

 and 
[image: image92.wmf]f

-to-
[image: image93.wmf]q

 depolarization is recommended over the alternative of retaining the V/H depolarization defined for 2D spatial channel models due to implementation complexity.
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5. Appendix
  Calculating the depolarization this way requires two additional steps. First the components of the electric field incident at the scatterer must be transformed from 
[image: image94.wmf]q

 and 
[image: image95.wmf]f

 coordinates to x,y, and z components with the transformation matrix 
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where 
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Next, the vertical and horizontal components need to be calculated. The vertical component is simply the z component, i.e. 
[image: image99.wmf],,
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. The horizontal component on the other hand is composed of x and y components and therefore the magnitude of the horizontal component is the square root of the sum of the squared magnitudes:
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where 
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 is the magnitude of the horizontal component,
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The horizontal component vector, 
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, is therefore the sum of the fields in the x and y directions, i.e.,
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Using 
(4)

 in the expressions for (3)

 and  GOTOBUTTON ZEqnNum738123  \* MERGEFORMAT  and 
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The depolarization matrix, 
[image: image111.wmf]P

, is applied to the vertical and horizontal components on the transmit side to give the horizontal and vertical components on the receive side, i.e. after depolarization according to (1)

:
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In order to compute the received components in the 
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 directions, 
[image: image116.wmf],

Vr

E

 and 
[image: image117.wmf],

Hr

E

 need to be converted to components in the x,y,z directions so that the inverse mapping 
[image: image118.wmf](

)

1

,

scsc

qf

-

T

 can be applied.  Here the angles 
[image: image119.wmf]sc

q

 and 
[image: image120.wmf]sc

f

 denote the angles of departure at the scatterer.  The conversion from 
[image: image121.wmf],

Vr

E

 to 
[image: image122.wmf],

zr

E

 is straightforward, i.e.,



[image: image123.wmf]1

,,,

VVVH

jj

zrVtHt

EeEeE

k

F-F

=+

.
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (9)

 For 
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however, depolarization affects both the x and y components: 
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Using equations 
(11)

 allows (9)

 through (6)

 and (3)

 through  GOTOBUTTON ZEqnNum738123  \* MERGEFORMAT , 
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One difficulty with this alternative is how to choose the polar and azimuth angles of departure from the scatterer, 
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 and 
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.  These are needed to calculate the inverse transformation 
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The electric field must be zero in the 
[image: image143.wmf]ˆ
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 direction and therefore we have the constraint 
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When 
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 are real as occurs when the antenna responses are real-valued (the current assumption), the above equation has the solutions
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Combining (13)

 gives the final result, the relationship between the transmitted and received fields expressed in spherical coordinates: 
(11)

, and (9)
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where 
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� In order to use Alternative 2, the assumption needs to be made the amplitudes of electric fields in the receiver coordinate system are equal to those of the scatterer, i.e. � EMBED Equation.DSMT4  ��� and � EMBED Equation.DSMT4  ���


� Real valued fields result when the field patterns of the transmit antennas � EMBED Equation.DSMT4  ��� and � EMBED Equation.DSMT4  ��� are also real valued.
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