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1. Introduction

At the RAN1#66 meeting, it was agreed within the DLMIMO SI [1] to study CSI feedback enhancement for multi-user (MU)-MIMO in single point transmission scenarios A/C (A: macro cell, C: Outdoor small cell) with higher priority than the mutli-point transmission scenario B. In [2], for single point transmission scenarios, a model of the quantization error based on a random vector quantizer assumption was used in order to explore potential benefits of increasing PMI feedback bits (the cases of 8, 12, 16 and 20 bits) for MU-MIMO without using a specific codebook design.
In this contribution, we set the requirements for a specific design of an actual codebook as below:

1. Support of independent antennas and uncorrelated channels (in particular scenario C) by incorporating both gain and phase information.

2. Scalable design to support increased PMI feedback 8 to 12 bits, and larger.

3. Low complexity codebook searches and lower complexity storage.

4. Simple operations and less to extend of rank-1 elements to rank-2 (and rank 3&4) elements.

5. Simple extensions to CoMP, geographically distributed antennas, and various antenna configurations including cross-polarized arrangments.
To further study the potential benefits of increased PMI feedback, as one example of codebook design that satisfies the above requirements we introduce a specific codebook design. The introduced codebook design is structured to allow for low complexity storage and PMI searches and also for efficient encoding of the gain information to support uncorrelated channels. It also has the ability to scale from 8 to 12 bits, and even beyond. The introduced codebook structure and its related benefits are described in detail in the following.
2. Codebook Structure
2.1 General Structure

A rank-1 element, v: v∊C4×1, of a B-bit codebook CB is represented by a separate encoding of gain and phase information into different feedback bits. To support low-complexity operations, the 4×1 vector is represented by information defining 2×1 two sub-vectors. Phase information represents both the relative phase (intra-phase) between complex entries within each sub-vector, and the relative phase (inter-phase) between sub-vectors. The gain information is coded using a permutation codebook and allows for both equal and unequal gain to different complex entries corresponding to different antennas or groups of antennas.
Before describing in detail the codebook, it should be noted that for any target vector q: q∊C4×1, the rank-1 elements of the codebook are designed to maximize a quantization of the channel direction, not the precise phases of the vector. Specifically, for a single target “q” the optimal element in the codebook is selected by

[image: image1.wmf]q

v

v

H

C

v

B

Î

=

max

arg

opt


One effect of this definition of the optimal element is that the optimal selection is not affected by an overall phase scaling of either the target vector or any of the codebook elements. Specifically:
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Furthermore, as in general operation, we assume that q is a norm-1 vector.  

The result is that the codebook structure has one less complex dimension (than 4) than it needs to represent than if it were designed to represent mean-square error approximation to q. The one less dimension comes from the combination of the one irrelevant overall phase and the restriction to norm-1 vectors [4]. This is in fact represented in the design of the codebook by forcing one of four complex entries of each vector v∊CB to be a real positive scalar (phase =0) and by restricting || v||=1 for all v∊CB.
2.2 Detailed Description

Each rank-1 element v is defined by 4 parameters, each with its own bit-allocation:

1. A joint gain vector and permutation specified using bg bits.  .
2. Two intra-subvector relative phase scalars θ1 and θ2 represented by p1 and p2 bits respectively

3. One inter-subvector phase scalar θ3 represented by p3 bits

For a B bit codebook we have bg+p1+p2+p3=B. Thus the 2B combinations of bits represented in all combinations of all values of the 4 parameters defines 2B unique codevectors.
Each element v has the following structure:
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We now describe in detail the representation of each of these parameters.

2.2.1 Permutation and gain codebooks

The permutation I={i(1),i(2),i(3),i(4)} and gain vector g={g(1),g(2),g(3),g(4)} are defined as one of 2^{gb} combinations by a codebook.
Different B values will often use different values of gb, as defined by the relative accuracy required between phase and gain information within the context of a total bit budget B.

One design of a joint permutation-gain codebook for gb=3 bits is shown in Table 1. There are a number of useful points to note:

1. There are two unique gain vectors. One is the equal gain vector, and the other is defined through a value β in dB.  We assume β>0 without loss in generality, so that the first two elements g(1) =g(2)>g(3)=g(4) for the unequal vector.

2. The permutations for index values 1, 2, …, 6 represent the full set of 6 possible selections of two antennas as the pair antennas to get the larger gain values {g(1),g(2)}.

3. Index value 7 could be used to support another gain vector. However, in this example we used it to signify that the Rel-8 4-bit PMI codebook is used when this index value is sent. As defined below, there are only 16 elements for this gain index (of the possible 2^(p1+p2+p3)). More elements can be defined as needed.
4. The gain vector allows the quantizer to handle cases where antennas may see different gains, as in the case of independent antennas. It also has the potential to extend to cases such as CoMP, geographically distributed antennas and other various antenna configurations.
Table 1 – A possible design of a 3-bit joint gain and permutation codebook.
	Index
	Permutation “I”
	Gain Vector

	0
	{1,2,3,4}
	g={1/2, 1/2, 1/2, 1/2}

	1
	{1,2,3,4}
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	2
	{1,3,2,4}
	

	3
	{1,4,2,3}
	

	4
	{2,3,1,4}
	

	5
	{2,4,1,3}
	

	6
	{3,4,1,2}
	

	7
	Use release 8 codebook for first 16 entries


Note, by default, the 0-bit gain codebook simply has the single permutation {1,2,3,4} and the equal gain vector. Extensions to 2-bit to 4-bit (and larger) gain codebooks can also follow similar principles, and may be useful for various PMI feedback rates. However, the split in bits between gain and phase parameters, and the benefit of unequal gain across antennas, needs to be considered carefully in the context of the scenario and feedback rate, and ultimately evaluated through appropriate experiments.  
2.2.2 Phase codebooks

The phase codebooks each represent a uniform sampling of phases from 0 to 2π, with a sampling granularity defined by the number of bits (i.e. p1, p2, or p3) for the given phase value. Specifically, for the intra-subvector phases one can think of the phase codebook as a codebook of 2-dimensional vector elements which define a relative phase between scalar entries. A convenient way to define a codebook as two dimensional vector elements is as follows:
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Similarly, the inter-subvector phase codebook follows a similar structure, except that only a scalar value is needed
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Note, with the definition of the permutation-gain and the phase codebooks one does not need to store the exhaustive list of rank-1 codebook vectors. Rather, it is sufficient to simply store the individual codebooks in order to generate rank-1 elements.
2.2.3 Embedding the Release 8 4-bit PMI codebook into the larger codebook 

As also suggested in [3], one option is to embed the existing 4-bit PMI codebook into the new larger codebooks. When using the 3-bit gain codebook one option showed in Table 1 is to use one of the permutation-gain indices as a default setting that assumes the use of this codebook. For example, in Table 1 we suggest using index 7 (though any index, e.g. index 0, could be used).  
In some cases of p1, p2, p3 the above codebook generates rank-1 elements that are co-linear with rank-1 elements in the existing 4-bit PMI codebook of LTE. Such duplicate elements could be identified and removed/replaced by other elements. However, even when rank-1 elements are duplicated they could still be kept as “duplicate” rank-1 elements if the companion rank-2 element of such a duplicated is different from that in the existing Rel-8 4-bit PMI codebook.
Another option to prevent duplicate elements is to phase shift the vector Ω by a small phase to guarantee elements different from those in the Rel-8 4-bit codebook.
2.2.4 Low-complexity search for the optimal vector 
We believe that this structure allows one to implement low complexity strategies that can be applied to the existing rank-1&2 SU-MIMO-based feedback and CQI determination searches (“PMI/CQI search” which assumes directly in the beam selection that at the receiver MRC is used when decoding rank 1 SU-MIMO transmissions and MMSE is used when decoding rank >1 SU-MIMO transmissions). We will not discuss such strategies here, though there are a number of options which can be considered and would have to be tested. In the Appendix, we illustrate one basic example on how the structure can also be applied to a low-complexity search for a codebook match to a single target value q∊C4×1, ||q||=1, defined by a principle component analysis of estimated channel values (“SVD search”). 
2.2.5 Rank-2 extension

For every possible rank-1 element defined by a combination of permutation-gain and phase indices g*, n*, m* and r*, (i.e. values g, the permutation, and values θ1, θ2, and θ3) there is an easy way to define a Rank-n: 1<n≤4, companion to the Rank-1 vector.  

As an example, consider the rank-1 codebook element
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One potential, and very simple, definition of a corresponding rank-2 codebook element is defined by
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This is just one possible definition of course, since there are infinitely many vectors v2 orthogonal to v, and other definitions which can be produced with permutations, negations and conjugations of elements.  
One good property of this particular definition, however, is defined by simple operations (conjugations, negations, and subvector-entry exchanges) on the complex entries of v.  Another is that the sub-vectors maintain the same gain values, i.e. pairs of elements in v2 use the same pair of gains as in v. Also, since the assignment of antennas to different sub-vectors is preserved, PMI and CQI searches for both rank-1 and rank 2 determination and searches can be broken down conveniently into the same sub-vectors.
We note, however, that the pair of elements [v,v2] defined by one combination of gain vector, permutation, and values {θ1, θ2, θ3} may in fact be co-linear with another pair of elements [v2,v] defined by another combination of parameters. This would result in some duplicate elements when looking at rank-2 pairs (though there are no duplications in the rank-1 elements themselves). However, there are strategies to remove this duplication, if so desired. For example, the phase offset value μ above can be used to create alternative values of rank-2 elements. Alternative definitions of other forms are also possible.
Rank-3 and Rank-4 elements can also be defined by operations on vectors v2 and v.
3. Summary
In this contribution, we introduced a structured codebook design for use with increased PMI feedback in order to enhance the performance of downlink MU-MIMO. The codebook design satisfies the below requirements which are important to support MU-MIMO with increased PMI feedback in uncorrelated channels. 
1. Support of independent antennas and uncorrelated channels by incorporating both gain and phase information.

2. Scalable design to support increased PMI feedback 8 to 12 bits, and larger.

3. Low complexity codebook searches and lower complexity storage.

4. Simple operations and less to extend of rank-1 elements to rank-2 (and rank 3&4) elements.

5. Simple extensions to CoMP, geographically distributed antennas, and various antenna configurations including cross-polarized arrangments.
The benefits of the introduced structured codebook are evaluated in the companion contribution [5] for channel models characterizing the single point transmission Scenario C. Further optimizations of the introduced codebook design as well as investigations on other codebook structures need to be considered towards further optimization of PMI feedback for enhanced MU-MIMO operation in single point transmission scenarios.
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Appendix

Example of low-complexity SVD search for the optimal vector 
Table 2 outlines the steps and associated (rough) complexity estimates with a low-complexity search as may be used in the “SVD search” shown in [5]. This illustrates one example of how the codebook structure can also be applied to a search for a codebook match to a single target value q∊C4×1, ||q||=1, defined by a principle component analysis of estimated channel values. As can be seen, permutation and gain information can be determined by a simple ordering of the energy (gain) seen on different antennas. Intra-subvector phases are searched independently and separately for each sub-vector.  The search of the inter-subvector information is a low-complexity search using some pre-computed scalar values which depend on the prior selected intra-subvector phase and gain information. It follows that the complexity in each step is roughly proportional to the (smaller) codebook size of the corresponding individual codebook of a given parameter.
Table 2 – A low-chart of rank-1 PMI search based on matching to a single 4x1 target vector.
	Step
	Operation
	Complexity

	1
	Select the gain and permutation (if gb>0)

Let q={q(1), q(2), q(3), q(4)}T

Define h={|q(1)|, |q(2)|, |q(3)|, |q(4)|}T

            ={h(1), h(2), h(3), h(4)}T

The goal is to select the permutation I={i(1),i(2),i(3),i(4)} and gain vector g={g(1),g(2),g(3),g(4)} to maximize
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The structure allows this to be done with few multiplications.  

Specifically with a 3-bit gain codebook one can select the two antennas with the largest gain.  If these antennas are [k*,j*] then consider the permutation with an unequal gain vector with i(1)=k* and i(2)=j*.  Calculate “gaininnerp” for both this permutation/gain combination and for the equal gain vector.  Choose the best.

Call this best permutation-gain index g*

Note, this index specifies both the selected permutation I={i(1),i(2),i(3),i(4)} and the selected gain vector g={g(1),g(2),g(3),g(4)}
	On the order of 4 abs() operations and 4 compare operations

Additionally, for the 3-bit codebook no more than 4 multiplications and 6 additions 

Note. since some gain values are the same for some cases, e.g. g(1) =g(2), g(3) =g(4), multiplications in the sum can be combined in some cases

	2
	Divide the target into two subvectors

q1={q(i(1)), q(i(2))}T

Q2={q(i(3)), q(i(4))}T
	

	3
	Select intra-phase for q1.

For cases where g(1)=g(2), the optimal index t is defined by  
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The optimal vector is defined by 
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For cases, where g(1) is not equal to g(2), the optimal index  is defined by  
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	i.  Approximately 2+2^{p1} multiplications (one value in each codebook element is 1)

ii.  Approximately 2^{p1} additions

 

	3
	Select intra-phase for q2.

For cases where g(3)=g(4), the optimal index t is defined by  
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The optimal vector is defined by 
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For cases, where g(3) is not equal to g(4), the optimal index  is defined by  
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	i. Approximately 2+2^{p2} multiplications (one value in each codebook element is 1)

ii. Approximately 2^{p2} additions

 

	4
	Select the inter-subvector phase between q1 and q2 given the intra-subvector phase selections.

Define
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Then the inter-subvector phase index is defined by 
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The optimal inter-subvector phase is defined by 
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	i. Approximately 4+2^{p3} multiplications

ii. Approximately 2+2^{p3} additions



	5
	Send to the base-station the bg, p1, p2, and p3 bits defining indices g*, n*, m* and r*
	

	6
	At the base station form the rank-1 vector
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