
TSG-RAN WG1 #53bis
R1-082463
Warsaw, Poland, June 23 – 27, 2008

Source:
Ericsson

Title:
Mapping from CCE index to PUCCH resource TDD
Agenda Item:
6.3
Document for:
Discussion and Decision

1. Introduction

For LTE operating in TDD mode it has been agreed [1] to support ACK/NAK bundling for those DL:UL configurations with more DL subframes (including DwPTS) than UL subframes per 5 ms or 10 ms periodicity. ACK/NAK bundling means that instead of sending individual ACK/NAK (or DTX) feedback per DL subframe, a single ACK/NAK/DTX report is sent accounting for several DL transport blocks in several DL subframes. This bundled ACK/NAK is computed by performing a logical AND operation on all ACKs for the respective DL transmissions to be acknowledged in a given UL subframe, i.e. a bundled ACK is sent only if all individual DL transport blocks were correctly received by the UE.
In this way each UL subframe is associated to a set of DL subframes, namely those that when carrying a DL transmission will have their ACK/NAK included in the bundle in the given UL subframe. This set of DL subframes is commonly referred to as the bundling window associated to the given UL subframe. Bundling windows are given by ACK/NAK timing relations as specified in [1], and may contain 1, 2, 3, 4 or 9 DL subframes. Notice that if a UL subframe is associated to a bundling window of size four say, this does not mean that four individual ACK/NAKs are always bundled in that UL subframe but only that at most four ACK/NAKs may be bundled if all DL subframes of the bundling window do carry DL transmissions to the particular UE.

A particular problem arising in the context of ACK/NAK bundling is that of allocating, for each UE that has received DL transmissions within a given bundling window, a resource on PUCCH in which to respond. In FDD, this mapping is based on the lowest CCE index in which the DL scheduling assignment was received on PDCCH [2, Section 10.1]. For TDD there are several suggestions on how to extend this basic principle, but also taking into account the indices of those subframes within the bundling window in which the DL assignments were received; see e.g. [3], and [4] for an overview. At the same time it has been noticed that some form of compression of the PUCCH resources are desired to avoid a large overhead relative to the total bandwidth [5]. Below we discuss a structured way to accomplish this.
2. Suggested principles of PUCCH compression and mapping
We propose to divide the problem of PUCCH compression and mapping into the following subproblems.

(i) Compression within subframes

(ii) Compression across subframes

(iii) Distribution of PUCCH resources

Below we detail each of (i)—(iii). The starting point is that we have available pairs (sk,ck), k=1,…,d, where d is the number of subframes of the bundling window in which DL scheduling assignments were received, sk is the index of the subframe in which the k-th assignment was received, and ck is the lowest CCE index in that subframe in which the assignment was sent on PDCCH. We also let D denote the total number of subframes of the current bundling window, i.e. D=1, 2, 3, 4 or 9, and let N denote the maximal number of CCEs in one DL subframe (with PCFICH = 3, i.e. 3 or 4 OFDM symbols for control information, depending on system bandwidth). Thus 0≤ sk ≤ D -1 and 0≤ck ≤ N -1 for all k. We remark that for DwPTS, N will be smaller.
We now wish to construct a mapping from the (sk,ck) to a resource on PUCCH in the UL subframe in which the bundled ACK/NAK is to be sent. In doing so it has been agreed [4] to base the mapping on the position of the lowest CCI index of the last received (detected) dynamic assignment within the bundling window, i.e. (sd,cd), to the PUCCH resource. This mapping will in general not be one-to-one, in order to save overhead allocated to PUCCH; cf. [5].
We notice that cd will have a bias towards small values (since it is the lowest CCE index), and similarly sd will have a bias towards large values (since it is the last subframe). In constructing the mapping we prefer to have the two bias effects in the same direction, and hence replace sd by D-1- sd; we can think of this as DL subframes being enumerated from the end of the bundling window. Below we write simply write (s,c) for (D-1- sd, cd).
By compression within subframes we mean that possibly many CCE indices within the same subframe map to the same PUCCH resource. For instance, by sending only one DL assignment in each pair of consecutive CCE indices, the eNodeB can save 50% of the allocated PUCCH resources. In general we replace c by [(c mod q0)/q1], where [.] denotes the integer part (rounding towards zero) and q0 and q1 are integers configured by higher layers. This construction maps groups of q1 CCEs within each DL subframe to the same PUCCH resource.
By compression across subframes we mean that possibly a given CCE index within many different subframes maps to the same PUCCH resource. We accomplish this by replacing s by [s/q2], where q2 is configured by higher layers. This construction maps a given fixed CCE index within groups of q2 DL subframes to the same PUCCH resource. We remark that this structure is the same as proposed in [3, Section 3.2], there referred to as PDCCH constrained windows.
Now let the logical PUCCH index be P = ([N/q1]+1)×[s/q2] + [(c mod q0)/q1], with values ranging from 0 to M-1 say, with the maximum attained for c=q0-1 and s=D-1. Again, if DwPTS is one of the subframes of the bundling window this expressions needs to be slightly adjusted, and its maximum will be different.
The eNodeB should thus allocate a total of M PUCCH resources in the UL subframe, and we assume that a total of 2W resource blocks (RBs; W RBs at each edge of the bandwidth) are assigned for this purpose. Thus each RB allocated to PUCCH will carry at most K PUCCH resources, where K is the smallest integer such that M≤K×W. By distribution of PUCCH resources we mean how the M logical PUCCH indices are assigned, or distributed, over W RBs. We describe this assignment by a permutation σ0, σ2,…, σM-1, which we call the physical PUCCH indices, of the numbers 0,1,2,…,M-1. Then we let the outermost RB (closest to the edge of the bandwidth) carry physical PUCCH indices 0,1,…,K-1, let the second outermost RB carry physical PUCCH indices K,K+1,…,2K-1, etc.
We propose to construct the permutation from logical to physical PUCCH indices as referred to as interleaved mapping in [6]. That is, in the permutation we first enumerate those logical PUCCH indices attained for [s/q2] ranging from 0 to its maximal value while [(c mod q0)/q1] = 0, then for increasing [s/q2] while [(c mod q0)/q1] = 1 etc. In other words, in this mapping the value of [s/q2] is the inner loop while the value of [(c mod q0)/q1] is the outer loop; an example is found in Figure 1 We also remark that interleaved mapping can be viewed as interleaving subframes within block-interleaved mapping, where the latter was proposed in [7]. This choice between block interleaving and interleaving may also need to consider the decisions made regarding multiple ACK/NAK transmission. One advantage of a fully interleaved solution is that the minimum possible PUCCH overhead may be smaller than as compared to block interleaving. In any case, the interleaved mapping may be modified to take into account that different subframes may contain different maximum amount of CCEs.

[image: image1]
Figure 1: Example of interleaved mapping from logical to physical PUCCH indices. The middle subframe is DwPTS and hence carries fewer possible CCEs. In this example c0 = 6, c1 = 1 and c2 = 1, so that no compression of indices is done.
3. Some features of the proposed solution
By adjusting the parameters q0, q1, q2 and W (or, equivalently, K) suitably, the eNodeB can obtain a wide range of mappings with one extreme being full allocation of PUCCH resources for all CCE indices in all subframes of the bundling window (high PUCCH overhead, high multiplexing capability in [5]), but on the other hand mappings with more or less overlap within and across subframes are also available.
A particular point in that both s and c will have a bias towards small values is that this pair will tend to map to small logical PUCCH indices. Then by distributing small logical indices to small physical indices, there is a greater chance that an UL RB initially reserved for PUCCH will actually become unused and hence available to PUSCH.

We do remark that the eNodeB is however quite restricted in the choice of smallest CCE index by the hashing function that any UE will use to limit the number of blind decoding attempts of PDCCH it will do [9]. In fact, the smallest CCE index for any UE will be at most one of six possible for each CCE aggregation level, and with an offset that can be viewed as a random number ranging from 0 to NCCE-1 where NCCE is the number of CCEs available in the DL subframe in question. This is the reason for introducing the component c mod q0 in the mapping above. If the eNodeB wants to address two UEs with search spaces close to each other, compression using q1 will be quite ineffective while the eNodeB can set q0 = 2 and then use even and odd lowest CCE indices respectively for the two UEs. Using q0, the magnitude of the lowest CCE index thus becomes unimportant. If the eNodeB does not want to use this functionality, it can set q0 = N.
In FDD the hashing function is updated every DL subframe. In order to make compression across subframes meaningful it is however desirable that the UE can reuse the same lowest CCE index to any given UE in all DL subframes within a subgroup of q2 subframes (cf. [5]). Therefore we propose that the hashing function is updated only for every new subgroup of subframes. Note however that the first subgroup, in time, will contain less than q2 subframes if D is not divisible by q2.
4. Conclusion
We propose
· That the mapping is done in an interleaved or block interleaved way.

· That the mapping is done in reverse subframe order.

· That the mapping can be configured by higher layer signaling to become many-to-one with
· compression within subframes, and
· compression across subframes.

· That it is considered to update the hashing function defining a UE’s search space only for every new subgroup of DL subframes within a bundling window.

It may be noted that the mapping outlined contains three parameters, q0, q1, and q2. This does not mean that the three parameters need to be configured independently but rather that a (small) number of suitable triplets are chosen.
References

[1] 3GPP R1-082193, “UL ACK/NAK procedure for TDD” (CR to 36.213).
[2] 3GPP TS 36.213 v8.2.0.

[3] 3GPP R1-081858, “ACK/NACK bundling details for LTE TDD”, Nokia Siemens Networks, Nokia.

[4] 3GPP R1-082166, “Association between DL control channel and UL ACK/NAK resource for TDD”, Huawei, CATT, CMCC, Ericsson, Motorola, Nokia, NSN, Qualcomm.

[5] 3GPP R1-081851, “On the PUCCH overhead associated with CCE index mapping”, Nokia, Nokia Siemens Networks.
[6] 3GPP R1-081748, “CCE to uplink ACK/NACK mapping in TDD”, Samsung.
[7] 3GPP R1-082059, “Uplink ACK/NACK implicit mapping in TDD”, Huawei.
[8] 3GPP TS 36.211 v8.2.0.
[9] 3GPP R1-082207, “Blind PDCCH decoding”, Ericsson (CR to 3GPP TS 36.213 v8.2.0, Section 9.1.1).

physical indices 0,1,2,3,…

3

0

1

2

4

5

3

0

1

2

3

0

1

2

4

5

3rd subframe

2nd subframe

1st subframe

PCFICH = 3

PCFICH = 2

PCFICH = 1

3

0

1

2

4

5

3

0

1

2

3

0

1

2

4

5

