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Introduction
This contribution provides proposals on various UL sequence hopping aspects. The following design criteria was targeted:
· Sequence hopping pattern generation in this contribution is compatible with agreed two-level hopimg scheme [4]
· Simple arithmetic to compute PUCCH and PUSCH allocation parameters in every symbol
· Flexible PUCCH cyclic shift – orthogonal cover allocation. The hopping pattern is independent of the overall allocation strategy (CS-OC map). The UE needs to know only its own initial parameter set; it doesn’t need to know about other UEs’ assignments. 
· A single set of rules for either the cell specific hopping or the resource specific hopping case
2 Sequence Index Hopping
For both the PUCCH and PUSCH, a set of possible RS sequences denoted by their sequence index are defined for each possible RB allocation case. In the case of the PUCCH, the same set of sequences is also used to convey control information. 

A two level sequence hopping pattern was defined in [4].  The hopping pattern generation in this contribution is compatible with [4]. 

We assume the following: 

· For 
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, there are 30 sequence indices available. There are 30 sequence groups, with one sequence in each group

· For 
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, there are 60 sequence indices available. There are 30 sequence groups with two sequences in each group

We also assume that there is a single DL signalling bit informing the UE about whether sequence hopping should be used or not. In the following, we discuss the sequence hopping and no hopping cases separately
2.2 Case of Sequence Hopping Disabled
2.2.1 PUSCH

With sequence hopping disabled, the UE uses the PUSCH RS sequence index (or indices) corresponding to the signalled sequence group. 

· For 
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, the UE uses a single sequence index (one of 30).

· For 
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, the UE uses the first sequence index in the signalled sequence group in the first slot of the subframe and it uses the second sequence index in the signalled sequence group in the second slot of the subframe. Therefore the UE alternates between the two sequences defined for the sequence group.  
If it is desired to have more sequences (i.e. more than two) per sequence group for some 
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 then the UE cycles through the sequence indices in a similar fashion. 
In more general terms, if there are m indices per sequence group, i.e. the set of indexes is 
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 in a given sequence group, then in the ith slot of a frame, the UE would use the sequence with index 
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.  In the first slot of a frame, 
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 would be always used. 

2.2.2 PUCCH

When sequence hopping is disabled, the UE uses a single sequence based on the signalled sequence group for both the RS and the control data modulation.  
2.3 Case of Sequence Hopping Enabled

We propose using the generic scrambling sequence generator (Gold sequence) in order to generate the index hopping sequence. The generator was described in [1][2]. 
2.3.1 PUSCH

With sequence hopping enabled, the UE uses the PUSCH RS sequence index as determined by the scrambling sequence generator output. The sequence generator is initialized at every subframe boundary and clocked once for every slot. At initialization, the 31-bit seed sequence is constructed according to the following: 
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	Subframe_ID
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	Root_hopping_pattern_ID


where Root_hopping_pattern_ID selects one of the 17 root hopping patterns described in [4].   

Note that because the Subframe_ID is part of the initialization bits, the resulting sequence period is one frame (10ms). 

Suppose the scrambling generator output is 
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 where u is the number of slots per frame, then the PUSCH sequence index 
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 in slot i is determined as
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 EMBED Equation.3  [image: image20.wmf])
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Alternatively, the index hopping can be restricted to within a particular code group
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(i.e. effectively we are taking consecutive bytes of the scrambling sequence, one for each slot, or sequence hopping period, and take the corresponding integer value plus the Sequence_shift_ID modulo the total number of sequence indices). 
where 
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 selects one of the 30 sequence shifts as described in [4], and m is the number of sequences indices per sequence group.  Note that it was proposed to have m assigned as 
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Alternatively, the index hopping can be restricted to within a particular code group by setting
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2.3.2 PUCCH

With sequence hopping enabled, the UE uses the PUCCH RS and control sequence index as determined by the scrambling sequence generator output. The sequence generator is initialized at every subframe boundary and clocked once for every symbol. At initialization, the 31-bit seed sequence is constructed according to the following: 

	Initializer Bit
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	Root_hopping_pattern_ID


Note that because the Subframe_ID is part of the initialization bits, the resulting sequence period is one frame (10ms). 

Suppose the scrambling generator output is 
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 where v is the number of symbols per frame, then the PUCCH CGS sequence index 
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 in symbol i is determined as
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The Root_hopping_pattern_ID and Sequence_shift_ID are according to the definitions in [4], and they are used similarly as in the case of PUSCH; however, the actual Root_hopping_pattern_ID and Sequence_shift_ID parameters might be different for the PUSCH and PUCCH so as to allow time domain cyclic shift multiplexing of PUSCH RS signals in neighbouring cells [4].  
Note that from the sequence index generation purposes, the RS and control symbols within the PUCCH are not distinguished. 
3 Cell Specific Cyclic Shift Hopping 
3.1 PUSCH

We propose no cyclic shift hopping for the PUSCH RS. The cyclic shift is either explicitly signalled in the assignment or otherwise it is set to a static value conveyed by higher layer signalling. 
3.2 PUCCH

For the purpose of inter-cell interference randomization, a cell specific cyclic shift offset sequence was proposed. In order to simplify implantation, we assume that for the cell specific cyclic shift application purposes, the RS and control symbols within the PUCCH are not distinguished. 

Let 
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 be the cyclic shift offset in symbol i.  We assume 
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And if the cyclic shift in a symbol is 
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 before applying the cell specific cyclic shift offset then it will be 
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 after applying the cell specific cyclic shift offset. 

We propose two options for generating the 
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, described next. 
3.2.1 Uncoordinated Cyclic Shift Offset Generation
In this case, the cyclic shift offset pattern depends on the Cell_ID. The cell specific cyclic shift offset is determined by the scrambling sequence generator output. The sequence generator is initialized at every subframe boundary and clocked once for every symbol. At initialization, the 31-bit seed sequence is constructed according to the following: 

	Initializer Bit
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Note that because the Subframe_ID is part of the initialization bits, the resulting sequence period is one frame (10ms). 

Suppose the scrambling generator output is 
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 where v is the number of symbols per frame, then the cell specific cyclic shift offset 
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 in symbol i is determined as
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 EMBED Equation.3  [image: image51.wmf]12
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i.e. taking consecutive bytes of the scrambling sequence, one for each symbol and take the corresponding integer value modulo 12.  

3.2.2 Cell-Coordinated Cyclic Shift Offset Generation

In this case, the cyclic shift offset is the sum of two components; the first is a pseudo-random sequence dependent on the Cyclic_shift_hopping_group_ID, while the second is a deterministic sequence dependent on the Intra_group_shift_ID.  The purpose of this construction is to minimize the cyclic shift alignments in cells with the same Cyclic_shift_hopping_group_ID. Basically this is the same structure as for the two level hopping solution proposed in [4] for the sequence index.  
Note that such an optimized cyclic shift structure is beneficial even in the case of sequence index hopping (e.g. as described in Section 2.3). There are sequence cross-correlation peaks even when different sequences are used in adjacent cells. The high cross-correlation cases only occur at specific offsets, so a structure that minimizes the repetition of the same cyclic shift offset across neighbour cells has a benefit of reducing the worst case interference.   
The pseudorandom cyclic shift offset component, 
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, is determined by the scrambling sequence generator output. The sequence generator is initialized at every subframe boundary and clocked once for every symbol. At initialization, the 31-bit seed sequence is constructed according to the following: 
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	Cyclic_shift_hopping_group_ID


Note that because the Subframe_ID is part of the initialization bits, the resulting sequence period is one frame (10ms). 

Suppose the scrambling generator output is 
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 where v is the number of symbols per frame, then the cell specific cyclic shift offset 
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 in symbol i is determined as
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i.e. taking consecutive bytes of the scrambling sequence, one for each symbol and take the corresponding integer value modulo 12.  

The Intra_group_shift_ID dependent deterministic cyclic shift offset value 
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Note that a single formula exists for generating the sequences above. Also note that the sum of 
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 for Intra_group_shift_ID =1 and Intra_group_shift_ID =2 is always zero modulo 13. 

For any pair of Intra_group_shift_ID s, the element-wise shift differences are always distinct.  

Finally, the cell specific cyclic shift offset 
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 in symbol i is determined as 
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Note that a possible assignment of the cyclic shift hopping parameters is the following:
Cyclic_shift_hopping_group_ID = PSC_ID
Intra_group_shift_ID = SC_ID
4 PUCCH Resource Hopping
The PUCCH resource hopping is a combination of a resource-specific cyclic shift hopping pattern and a cell-specific orthogonal cover shift.  
The resource-specific cyclic shift hopping pattern is a deterministic rearrangement of cyclic shift assignments at the slot boundary (or at any other designated symbol boundary where resource-specific cyclic shift hopping occurs [6]).  By using a deterministic pattern, better randomization can be achieved than with randomly generated patterns. 
The cell-specific orthogonal cover shift is achieved by linearly adding (EXOR) the same vector to all orthogonal covers within a PUCCH RB. This method maintains the relationship between orthogonal covers within the same cell and achieves randomization inter-cell.  This is beneficial in very high Doppler scenarios where loss of orthogonality between certain orthogonal covers can persist even with different cyclic shift hopping patterns applied across neighboring cells.  The cell-specific orthogonal cover shift is applied at every slot boundary.    

4.1
PUCCH Resource-specific Cyclic Shift Hopping
At every slot boundary, the cyclic shift allocation is offset according to a deterministic pattern. The purpose of this is to maximize the distance in a new slot between resources that were sharing the same initial cyclic shift in the previous slot.  This method achieves better randomization than a simple random resource hopping. 
Resource hopping is generated by adding a slot and resource dependent cyclic shift offset 
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 for slot i, where the offset also depends on orthogonal cover index j.  
Note that the offset is relative to an initial cyclic shift assignment as given in [5] and the orthogonal cover index j is the initial orthogonal cover index given in [5]. 
The cyclic shift offset 
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 for non-RS symbols in slot i and orthogonal cover index j is determined as
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For which the orthogonal cover index j is mapped to spreading sequences as shown below
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For RS symbols, the cyclic shift offset 
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 in slot i and orthogonal cover index j is determined as
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For which the RS orthogonal cover index j is mapped to spreading sequences as shown below
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Cyclic shift offsets 
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 and 
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 are relative to an initial cyclic shift assignment as given in [5]. 

4.2
Cell-specific Orthogonal Cover Shift 

The orthogonal cover is changed at every slot boundary. The relationship between the orthogonal cover functions within a cell is unchanged by the cell-specific orthogonal cover shift; however, the relationship between orthogonal cover functions inter-cell are randomized.   
A cell dependent linear offset is applied to each orthogonal cover function.  The offset means that a cell specific cover function is added (element-wise multiply) to each orthogonal cover function used in the cell. This approach preserves the optimum distribution of orthogonal covers that is being used within a cell. 

The cell specific orthogonal cover offset index is determined by the scrambling sequence generator output. The sequence generator is initialized at every subframe boundary and clocked once for every slot. At initialization, the 31-bit seed sequence is constructed according to the following: 
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Note that because the Subframe_ID is part of the initialization bits, the resulting sequence period is one frame (10ms). 

Suppose the scrambling generator output is 
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 where u is the number of slots per frame, then the cell specific orthogonal cover offset index 
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 for the ACK data in slot i is determined as
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While for the RS, the cell specific orthogonal cover offset index 
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 in slot i is determined as
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Then the actual applied orthogonal cover is the sum (element-wise product) of the initial assigned orthogonal cover and the orthogonal cover function indicated by 
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 and 
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 for the ACK data and ACK RS, respectively.
5 Pseudorandom Sequence Generator 
For various purposes, pseudorandom sequences are used in the sequence hopping pattern generation. For this purpose, the structure shown in Figure 1 can be used.  Shorter sequence generator could be used as well.  The advantage of the structure shown in Figure 1 is that a single generator can be used to generate all pseudorandom sequences. 
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Figure 1  Pseudo-random Sequence Generator
Note that shorter sequence generator could be used as well. 
6
Conclusions

Proposals were given for the various UL sequence hopping applications.  In summary, we propose: 

· A solution for both cell-specific and resource specific cyclic shift hopping

· Sequence index hopping pattern details

· Cell-coordinated cyclic shift hopping pattern

· A cell-specific orthogonal cover offset index hopping pattern

· Simple arithmetic to compute PUCCH and PUSCH allocation parameters in every symbol

· Use of a scrambling generator for various pseudo-random sequences

· Flexible PUCCH cyclic shift – orthogonal cover allocation. The hopping pattern is independent of the overall allocation strategy. The UE needs to know only its own initial parameter set; it doesn’t need to know about other UEs’ assignments. 

· A single set of rules for either the cell specific hopping or the resource specific hopping case

We recommend considering these aspects in finalizing the UL DM RS and PUCCH randomization specification. 
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Annex - PUCCH Resource Specific Cyclic Shift Hopping 
Note that according to previous agreements, resource specific cyclic shift hopping may not be needed. 

If enabled, the resource specific cyclic shift hopping is performed on a per symbol basis. The hopping pattern is based on a factor 3 decimation. 

The resource specific cyclic shift 
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 in control (non-RS) symbol j is determined as
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In the first symbol of every frame, j=0. After that, j is incremented by one for every control symbol but it is not incremented for RS symbols. 

The resource specific cyclic shift 
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 in RS symbol k is determined as
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In the first RS symbol of every frame, k=0. After that, k is incremented by one for every RS symbol but it is not incremented for non-RS control symbols. 
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