3GPP TSG RAN1 #50

 R1-073360
Athens, Greece
August 20-24, 2007

Agenda Item:

7.3
Source:

Motorola

Title:
Convolutional code rate matching in LTE
Document for:

Discussion and Decision
1. Introduction

In the Orlando meeting, it was agreed as a way forward to use the circular buffer (CB) based rate matching (RM) for convolutional codes, with the decision “conditioned on testing a larger set of coding rates with R=0.35 to 0.75, for a range of block sizes 30 to 80” [2].
This contribution provides detailed simulation results requested by [2]. The simulation results show that the circular buffer based rate matching algorithm has equivalent or better performance than the Rel-99 rate matching algorithm for all cases. Thus it is proposed that the way forward is upheld, with the circular buffer rate matching used for convolutional codes per [2].
2. Circular Buffer Based Rate Matching Algorithm

As agreed [3], the tailbiting convolutional code uses a single rate 1/3 Optimal Distance Spectrum (ODS) generator polynomial g3=[133, 171, 165] (octal). It contains the rate ½ ODS generator polynomial g2=[133, 171] (octal). Thus only g3 needs to be defined, while all the other code rates including ½ can be realized via the rate matching algorithm without loss of performance.
The circular buffer based rate matching algorithm as agreed in [2] is presented in the following. In Figure 1, the convolutional encoder is illustrated. The encoder takes K information bits and produces parity bit streams P0, P1, and P2, each of length K. If {P0, P1, P2} are taken as output, it is the rate 1/3 ODS code; On the other hand if {P0, P1} are taken, it is the rate ½ ODS code.

[image: image1.emf]Tail-biting

Convolutional

Encoder

K Information

bits

P

1

P

0

P

2

g

0

=133 (oct)

g

1

=171 (oct)

g

2

=165 (oct)

Figure 1.
Tail-biting convolutional encoder.
Similar to the circular buffer based rate matching algorithm for turbo codes [5], the circular buffer based rate matching procedure for CC can be described as follows.

Step 1. Separate the three parity bit subblocks P0, P1, and P2.

Step 2. Perform a subblock interleaving on each subblock individually and obtain P(0, P(1, and P(2.

Step 3. Concatenate the P(0, P(1, P(2 streams, to form a circular buffer denoted by Q.

Step 4. Take the first Ntx bits from sequence Q, wrap around to the beginning of sequence Q if Ntx is greater than the length of Q. The code rate after rate matching is R=K/Ntx.
The procedure above is illustrated in Figure 2. Bits of P(2 only are gradually eliminated as the code rate increases from 1/3 to ½, while no bits of streams P(0, P(1 are eliminated. For code rates equal to or higher than ½, all bits of P(2 are punctured, while the bits of P(1 are gradually eliminated as the code rate increases from 1/2 to 1.

[image: image2.emf]P

0

P

1

P

2

Sub-block

interleaver 0

P’

0

P’

1

P’

2

Sub-block

interleaver 1

Sub-block

interleaver 2

Circular buffer:

Rate 1/3

Rate 1/2

Rate 2/3

KKK

Figure 2.
Circular buffer without interlacing between P(0 and P(1.
As with the turbo codes, the subblock interleaver for each stream is block-interleaver based. The block interleaver has Nc = 32 columns for all sizes K. The block interleaver has Nr rows, where Nr = ceil(K/ Nc) = ceil(K/ 32). The subblock interleaver procedure is described as follows.

· Write the bits row-by-row into the Nr by Nc block starting from the top left corner; If K<Nr × Nc, the first (Nr × Nc - K) positions are filled with dummy bits.

· Perform column permutation using the permutation pattern [1, 17, 9, 25, 5, 21, 13, 29, 3, 19, 11, 27, 7, 23, 15, 31, 0, 16, 8, 24, 4, 20, 12, 28, 2, 18, 10, 26, 6, 22, 14, 30];

· Read the bits out column-by-column starting from the top left corner. Discard the dummy bits at the output of sub-block interleaving if dummy bits were added.
Since there is practically no performance difference between adding dummy bits to the front or the end of the sub-block interleaver, the dummy bits are added to the front of the sub-block interleaver to be consistent with the rate matching scheme for turbo codes.
3. Simulation Results
In this section, the performance of the circular buffer based rate matching algorithm is examined according to [2]. The code rates tested are R=0.35:0.05:0.75, information block size are K = 30:5:80 (bit).
For comparison, Rel-99 rate matching algorithm in 3GPP TS 25.212 section 4.7.5 is also simulated. The parameter setting follows section 4.2.7.2.2 and is repeated below:

Xi=codeword length N,
eini = 1,
eplus = 2*Xi,
eminus = 2*|ΔN|, where ΔN =Ntx – N.

Although the description of 25.212 would have required P(0, P(1, and P(2 be interlaced bit-by-bit before puncturing, only P(0 and P(1 are interlaced bit-by-bit before puncturing for code rates equal to or higher than 1/2.
The simulator used maximum a posteriori (MAP) algorithm with two decoding iterations (results using other decoders are expected to be similar). Detailed simulation results are shown in Appendix A. The simulation results show that CB based RM algorithm has similar performance as Rel-99 RM for code rates 0.5 or lower. For higher code rates (R>=0.6), CB based RM performs has better performance than Rel-99 RM. For example, CB based RM is 0.5 dB better at FER=10-3 for code rate 0.75 and K>60 bits.
3. References

[1] 3GPP TS 25.212 v6.4.0 (2005-03): “Multiplexing and Channel Coding (FDD) (Release 6)”.

[2] R1-073207, “Way forward for LTE convolutional code rate matching,” 3GPP TSG RAN1 #49bis, Orlando, USA, June 25—29, 2007.
[3] R1-073197, “Way forward for LTE convolutional code,” 3GPP TSG RAN1 #49bis, Orlando, USA, June 25—29, 2007.
[4] R1-072670, Motorola, “Convolutional code rate matching in LTE,” 3GPP TSG RAN1 #49bis, Orlando, USA, June 25—29, 2007.
Appendix A – Simulation Results
[image: image3.wmf]
Figure 3.
Comparison of rate matching algorithms, CB based vs. Rel-99. QPSK, AWGN, rate 0.35.
[image: image4.wmf]
Figure 4.
Comparison of rate matching algorithms, CB based vs. Rel-99. QPSK, AWGN, rate 0.40.
[image: image5.wmf]
Figure 5.
Comparison of rate matching algorithms, CB based vs. Rel-99. QPSK, AWGN, rate 0.45.
[image: image6.wmf]
Figure 6.
Comparison of rate matching algorithms, CB based vs. Rel-99. QPSK, AWGN, rate 0.50.
[image: image7.wmf]
Figure 7.
Comparison of rate matching algorithms, CB based vs. Rel-99. QPSK, AWGN, rate 0.55.
[image: image8.wmf]
Figure 8.
Comparison of rate matching algorithms, CB based vs. Rel-99. QPSK, AWGN, rate 0.60.
[image: image9.wmf]
Figure 9.
Comparison of rate matching algorithms, CB based vs. Rel-99. QPSK, AWGN, rate 0.65.
[image: image10.wmf]
Figure 10.
Comparison of rate matching algorithms, CB based vs. Rel-99. QPSK, AWGN, rate 0.70.
[image: image11.wmf]
Figure 11.
Comparison of rate matching algorithms, CB based vs. Rel-99. QPSK, AWGN, rate 0.75.

Page 1 of 8

_1243768878.vsd
Tail-biting Convolutional Encoder

K Information bits

P0

P1

P2

g0=133 (oct)

g1=171 (oct)

g2=165 (oct)

_1243769270.vsd
P0

P1

P2

Sub-block interleaver 0

P’0

P’1

P’2

Sub-block interleaver 1

Sub-block interleaver 2

Circular buffer:

Rate 1/3

Rate 1/2

Rate 2/3

K

K

K

