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1 Introduction

One critical aspect of closed-loop MIMO operations in systems operating in FDD (frequency division duplex) mode is for the terminals to provide the transmitter with reliable channel state information (CSI), which allows e.g. scheduling of users in the downlink, selection of adaptive modulation and coding schemes as well as precoding of the data signals according to the channel conditions of the receiving terminals.

This control information is fundamental, e.g. in precoding for multi-user MIMO (MU-MIMO) in order to exploit the multiplexing gain. In general, the Node B requires accurate knowledge of the channel propagation coefficients between each pair of transmitting and receiving antenna elements. At the same time, as MU-MIMO schemes aim at maximising system throughput, it is also desirable to keep the aggregate feedback overhead in a cell sector at a minimum, [1-2].

This CSI is communicated to the transmitter by means of control information fed back periodically by the receiving terminals. The control signalling generally contains an encoded representation of a vector of channel measurements, plus a channel quality indicator (CQI) indicating the SINR (signal-to-noise plus interference ratio) at which the receiver is expecting to operate.
One common way of encoding the channel vector is by providing a vector codebook, which is known to both the transmitter and the terminals, such that each terminal feeds back an index corresponding to the codebook vector that is closest to the channel vector by some metric. This is basically a vector quantisation operation, and one of the preferred metric of choice is the chordal distance, [1-3].

This quantisation index report is carried out periodically in time and frequency, meaning that an index is fed back every given time-frequency resource block. These feedback reports typically show some level of correlation, which increases as the channel variations in time and frequency become slower. Therefore it makes sense to try and exploit this correlation in order to reduce the bit rate of the control signalling and/or increase the accuracy of the CSI reports. This allows defining the problem as an application of the Wyner-Ziv problem, [4,5]. Several papers address the problem of practical construction of  transmission schemes based on the Wyner-Ziv theorem, see for example [6] and [7] and reference therein.
In this contribution we present a method for encoding a channel vector (or, in fact any random vector) in multiple steps with increased accuracy. The method allows refining the feedback information in case of successive reporting of correlated instances of a channel vector. The method relies on the definition of several codebooks, as many as the desired maximum number of refinement steps. At the initial step of the quantisation process a codebook of dimension M is used, where M is the number of transmit antennas. At each successive refinement step, the codebook dimensionality is reduced by one, as we encode the quantisation error vector produced by the previous step. This is possible because the quantisation error vector lies in the vector space orthogonal to the quantisation vector. This space has one dimension less than the space the quantisation vector belongs to. One advantage of this construction is that each of the codebooks can be optimised for their own dimension and the codebooks are independent from each other. Moreover, as the dimension diminishes, the codebook size can also be reduced whilst keeping the same average distortion. In fact, for a given target quantisation distortion, any refinement step requires less bits for the encoding operation than the previous step as the quantisation is carried out in a one less dimension. Equivalently, by keeping the codebook size the same at each step, the distortion associated with each quantisation operation decreases.

2 Description of the method

1) The first step of the encoding process is an ordinary vector quantisation operation with the M-dimensional codebook. Let us call this refinement step 0.

2) In the next encoding operation, the vector, which may have changed from the previous step, is quantised again with the M-dimensional codebook. If the quantisation results in a different vector index from the previous step, then this new index is taken as the new vector representation.

If, however, the quantisation vector index from codebook M is the same as in the previous operation, then we carry on with a refinement step: the quantisation error produced by codebook M is itself quantised by using codebook M-1. Let us call this refinement step 1. This is possible because the quantisation error lies in the vector space orthogonal to the quantisation vector, which has dimensionality M-1.

3) In the next encoding operation the vector is again quantised with codebook M and M-1 for testing. If either of these operations returns a different index from the previous steps, than the new representation of the vector is given by this new index. Otherwise, if both operations return the same indices as before, this means that we can proceed with a further refinement and the error vector associated with refinement step 1 is quantised with codebook M-2. This yields refinement step 2.

4) The iterative procedure continues by further refining the vector representation if codebooks are provided for further refinement steps.

As an example we consider a real-valued 3-dimensional vector a, and we illustrate the quantisation operation carried out with a 3-dimensional codebook at refinement step 0 and with a 2-dimensional codebook at refinement step 1. The quantisation metric is chordal distance. The procedure can be generalised to complex vectors in M dimensions with refinement depth up to M steps.

We note that this quantization scheme is used to efficiently quantize the direction of the normalized channel vector. The amplitude information can be encoded separately by using e.g. a scalar quantiser.
In Fig. 1 refinement step 0 is depicted. The quantization vector 
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 is the codebook vector at minimum chordal distance, i.e.
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Where C0 is the codebook and c0,i  is one particular codebook vector, < a,c0,i > is the scalar product between the two vectors, and (i is the angle between the vector a and c0,i. Without loss of generality let us drop the index ‘i’ and call ( the angle between vectors a and â1, as shown in Fig. 1.  The error vector e belongs to the vector space ( orthogonal to the quantization vector, eT â1 = 0, and |e| = sin (.  
The approximate representation of a, at refinement step 0 is simply given by 
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In refinement step 1 the quantisation error vector e from step 0 is itself quantised by using a 2-dimensional codebook C1 with a collection of  (M-1)-dimensional unit norm vectors C1=[c1,0, c1,1, ….. c1,N2].  This codebook is used in order to quantize the vector 
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, i.e the normalized error vector. The vectors of C1 are rotated with a unitary transformation such that the rotated vectors belong to the plane (. (The transformation is provided in Appendix A). This transformation depends only on the vector â1 from step 0. Hence it is known at the transmitter (the mobile) and the receiver (the base station), and it can be computed without ambiguity.

The vector e can be quantized by approximating it to the vector at minimum chordal distance, 
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The refined representation of vector a has now become, Fig. 2: 
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Fig. 3 shows the complete picture of the two-step quantisation procedure. 

It can be shown that under very mild conditions on the minimum chordal distances of the two codebooks, the amplitude of the error vector 
[image: image9.wmf]γ

after refinement step 1 is always smaller than the amplitude of the error vector e at step 0. This is shown in Appendix B.
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Figure 1. Representation of the quantization at step 0.
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Figure 2. Representation of the quantization at step 1.
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Figure 3. Complete picture of the quantization scheme.

3 Conclusion

In this contribution we have presented a vector quantization method with successive refinements that is based on rotation of codebooks of decreasing dimensionality. The method allows exploiting the correlation between instances of channel vectors when encoding the CSI for feedback at consecutive time and/or frequency resource blocks. Among the advantages of the proposed technique are the compatibility with codebook-based feedback without refinement and straightforward specification requirements. We propose to investigate the potential of this technique to help reduce the overhead for CSI feedback from the UE.
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5 Appendix A: Transformation

The vectors of C1 are rotated with a unitary transformation, such that the rotated codebook vectors belong to the plane (. This rotation operation preserves the chordal distance between vectors. The transformation is defined by the following matrix chain
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Where B is a basis-change matrix with the vector b0=[0,…0,1]T in the first column, the vector b1 s.t. b1Tb0 = 0 and b1 belonging to the plane created by b0 and â1. The other column vectors to complete the basis are found by applying Gram-Schmidt.

Call ( the angle created by the vector â1 on the plane orthogonal to b0, then G is the Givens matrix with parameters (1,2, (-(/2), [9] i.e.
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6 Appendix B: Distortion

Let us call ( the error vector after the two-step quantisation (see Fig. 3), such that  (T 
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We want to find the conditions such that
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This inequality can be solved by
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We are primarily interested in the critical case when φ is small because we want to find the most restrictive conditions under which the refinement step 1 improves on step 0. Sufficient conditions in this case are given by
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These conditions are shown in Fig. 4. The condition is respected if 
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, i.e. the feasibility region lies below the curve of Fig. 4.

It is interesting to note that for ((0 
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, i.e. if the refinement codebook contains more than 3 codewords the amplitude of the error vector 
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after refinement step 1 is always smaller than the amplitude of the error vector e at step 0.
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 Figure 4. Sufficient conditions to reduce the distortion. 
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