
R1-071127 1

3GPP TSG RAN WG1 #48 R1-071127
St. Louis, USA, February 12 – 16, 2007

Agenda Item: 6.4

Source: Broadcom and ZTE

Title: Tail-biting offers coding gain with the warm-up using the
existing state metric processor

Document for: Discussion/Decision

1 Summary
Tail-biting encoding has been discussed as an option for 3GPP LTE turbo coding
during the past years (see reference [1-7]). Moreover, this technique has already been
used in several standards [8-11]. New Interleaver structures of QPP based turbo
coding will support parallel decoding operations where a circular structure of the tail-
biting encoder will benefit decoder operation. However, several questions have been
raised in 3GPP LTE discussions, namely,

a) Is there a performance gain of tail-biting;
b) Is tail-biting encoding latency a problem; and
c) Is there a practical “genie” for decoding with tail-biting

In this document, we try to answer these questions.

We show performance for block sizes where tail-biting dramatically improves
performance. It may also be the case that turbo coding over block sizes that may
required for VOIP operations may increase performance and sensitivity of the overall
VOIP operation. A contribution addressing this aspect is being prepared for
consideration.

The incurred latency, and impact to the encoder in terms of power and gate count are
shown to be minimal.

We show the circular structure of the tail-biting coupled with the required warm-up
decoding operation necessary for slide window decoding technique and parallel
decoding of high rate data transmission make tail-biting an attractive alternative for
LTE.

Also in this document methods of tail-biting encoding for 3GPP LTE turbo codes
using QPP interleaves with and without limitation on multiple 7 are discussed.

2 Trellis termination methods - old and new
Trellis termination that makes the end state of the encoder equal to the initial state is
widely used for turbo coding. In 3GPP Rel.6 [12], the termination is performed by
taking the 3 tail bits from the shift register feedback after all information bits are
encoded. This method causes several problems, namely, 1) rate loss (or energy
increase) and 2) non-uniform protection since the terminate bits are not protected by

R1-071127 2

interleave, 3) complicated rate matching [7], 4) small minimum distance [7 and 13],
and etc. Tail-biting technique [14-16] is introduced to prevent these problems. Fig. 1
shows the tail-biting performance gain in these aspects. The performance in Fig.1 is
with the rate loss normalization, which shows more than 0.23dB gain from tail-biting.

3.2 3.4 3.6 3.8 4 4.2 4.4

10
−4

10
−3

EbNo (dB)

B
LE

R

Turbo, 6−bits−term.
Tail−biting(12 bits warm−up)
Info. block size 40

Figure 1 Tail-biting performance gain by both no rate loss and uniform protection

Short block codes are frequently used in transporting voice for 3GPP. In fact, in [17]
it shows that most used block size for voice is 39,159 and 244. Therefore, with the
none-negligible coding gain tail-biting will benefit the turbo coding for 3GPP LTE.

3 Answers to the three questions
3.1 Tail-biting (circular) encoding

Figure 2, Turbo code.

Definition Let u0,u1,…,uk-1 be the information sequence sent to one of the
convolutional encoders of a turbo code such that S0,S1,…, Sk be the corresponded
states sequence. The encoding is tail-biting (or circular) for this given information
sequence if and only is S0=Sk.

3.2 Encoding latency
Different to tail-terminating turbo coding in [12], tail-biting needs encoding
information bits twice. This will cause extra one frame latency. However, since the
encoder is a shift register the following example show that adding extra latency is
acceptable or we can modify the encoder to make it up.

Encoder1

Encoder2

R1-071127 3

Example 1 Suppose the frame size = 5,000 bits, 10 Mbps (0.5 msec. Frame). Let us
take the clock = 150 MHZ . The encoder can process 1bit/cycle. Then we have

time/bit=1/(150e+6)=6.7e-9

Tail-terminating encoding: time/frame = 5000*6.7e-9=33e-6 seconds
Tail-biting encoding: time/frame = 67e-6 seconds

If one wants the tail-biting encoder has the same throughput as terminating encoder,
we can do the following:

A) Let encoding process 2 bit/cycle for tail-biting. Then time/frame = 33e-6 seconds.
The increase of hardware is very small compared to the encoder with 1 bit/cycle

B) Faster clock to 300 MHZ since the encoding has bitwise operation only.

3.3 There is a practical pseudo-genie in turbo decoder
It is obvious that if one does not take the advantage of the tail-biting property on
decoding, the performance of tail-biting turbo coding will be worse then that of tail-
terminating turbo coding. In the following we will explain how to apply tail-biting
property to the decoding without extra hardware and latency cost.

3.3.1 Serial decoding with slide window technique

In order to save the decoder area, it is well known in the industry that slide window
technique [18] need to be used. In the slide-window decoding, the turbo block is
divided into several windows, see Figure 3. To decode tail-terminating turbo code, the
start values for computing the forward state metric α are given by previous windows,
except the first window. Since the initial state is known, the start values (which
equivalent to the probability of states) of the first window can be consider given. Thus,
the computation starts from window 1. However, the starting value for backward state
metric β is never known. To solve this problem, a warm-up (or cold start) procedure
(blue color in Fig.3) has to be added so that the start value can be estimated. One can
consider this warm-up as a pseudo-genie. This estimate use the bit metric of the next
window, except the one for the last window (light blue in Fig. 3). For the last window,
the warm up is start from the first window since the final state is equal to the initial
state. This procedure is based on “the fact that the VA can start cold in any state at
any time; initially, the state metrics generated are nearly worthless, but after a few
constraint lengths, the set of state metrics are as reliable as if the process had been
started at the initial (or final) node [18].” In fact this will not cost any additional
hardware since the warm-up hardware is the same hardware used in the window and
there is no need to store the values (expect the last one which is the start value of the
current window) obtained by warm-up.

R1-071127 4

Figure 3 Tail-Terminating decoding with slide windows

To decoding tail-biting turbo code (see Fig.4), the only difference is on the first
window which need cold start from the last window since the last state is equal to the
first state given by tail-biting. This one additional procedure uses the same hardware
for α computation, and it uses the same time as cold state of β. Therefore, there is no
extra hardware and extra latency. Our simulation results in the following sections are
obtained by using this technique.

Figure 4 Tail-biting decoding with slide windows

Warm-up for beta state metric computing of window 1

Turbo frame
window 2 window 1 window P

Warm-up for β computation of window P

Warm-up for β state metric computing

Warm-up for β state metric computing

Turbo frame
window 2 window 1 window P

Warm-up for β computation of window P

R1-071127 5

3.3.2 Parallel decoding

The difference of parallel decoding to the slide-window serial decoding is that all α
and β computation need warm up (see Fig.5 and Fig.6) since all P processors starts at
the same time.

Figure 5 Tail-terminating parallel decoding

Figure 6 Tail-biting parallel decoding

The only difference between tail-biting and tail-terminating parallel decoding is the
warm-up for α of the first window, which can be done from the last window (pink
color in Fig.6) thanks to the tail-biting. Obviously, there is no need to add extra
hardware and latency.

Warm-up for β state metric computing

Turbo frame
window 2 window window P

The warm-up for α computation of window 1

Warm-up for α state metric computing

The warm-up for β computation of window P

Warm-up for β state metric

Turbo
window 2 window 1 window P

Warm-up start for β computation of window P

Warm-up for α state metric computing

R1-071127 6

3.4 Performance gain on tail-biting over tail termination of
turbo code and convolutional code

In the following, the performance comparisons are given among 8-bit terminating 256
states convolutional code, 6 bits tail-terminating technique and tail-biting technique
for rate 1/3 turbo code using QPP interleave [19] on AWGN channel. The plots are
normalized with 12-bits tail-terminating. We note that all the simulation results are
obtained using the practical state metric warm-up. A 12 bits warm-up period is used
for the block size less than 128. Block size larger than 128 will have more benefits by
using 32 bits warm-up period.

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8

10
−5

10
−4

10
−3

EbNo (dB)

B
LE

R

CC 8−bit−Term.
Turbo, 6−bits−term.
Tail−biting(12 bits warm−up)
Info. block size 40

Figure 7 Information block size 40 (0.23dB gain)

2.8 3 3.2 3.4 3.6 3.8 4

10
−4

10
−3

EbNo (dB)

B
LE

R

CC 8−bit−Term.
Turbo 6−bit−Term.
Turbo Tail−biting(12 bits warm−up)
Info. block size 48

Figure 8 Information block size 48

R1-071127 7

2.8 3 3.2 3.4 3.6 3.8 4

10
−4

10
−3

EbNo (dB)

B
LE

R

CC 8−bit−Term.
Turbo 6−bit−Term.
Turbo Tail−biting(12 bits warm−up)
Info. block size 64

Figure 9 Information block size 64

2.2 2.3 2.4 2.5 2.6 2.7 2.8

10
−4

10
−3

EbNo (dB)

B
LE

R

Turbo 6−bit−Term.
Turbo Tail−biting(20 bits warm−up)
Info. block size 128

 Figure 10 Information block size 128

1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2 2.05 2.1

10
−4

10
−3

EbNo (dB)

B
LE

R

Turbo 6−bit−Term.
Turbo Tail−biting(32 bits warm−up)
Info. block size 256

Figure 12 Information block size 256

4 Applying tail-biting on 3GPP LTE turbo codes
It is shown in [6] that Rel.6 turbo encoder is not tail-biting encoder for 1/7 of all
possible information sequences. On the other hand, the channel coding system of
3GPP LTE has to support arbitrary number of information bits ranged from 40 to
6144 (or 8192). In [7], a necessary and sufficient condition is given for a tail-biting

R1-071127 8

turbo code. Using this condition, possible approaches of tail-biting system for 3GPP
LTE are discussed in this section. With these methods, both QPP interleave lists, i.e.
Table 2 and Table 3 in [19] can be used for tail-biting.

4.1 Necessary and sufficient condition on tail-biting encoding
In [15], a sufficient condition is given for an encoder being tail-biting for any
information sequence with a given block size. In [22], it is proved that this condition
is also necessary for an encoder with minimal degree (i.e. the number of states cannot
be reduced). To state this necessary and sufficient condition, the definition of state-
space realization of convolutional encoder from [15 and 23-25] is needed.

Consider a rate k0/n0 convolutional encoder of degree m, let the input sequence be
),,(10 −= Nuu Lu where),,(0,1, 0 ikii uuu L−= and the output sequence be

),,(10 −= Nxx Lx where),,(10 i,0xxx i,ni L−= . Moreover, let),,()(
0

)(
1

tt
m sst L−=S be the

encoding state at time t. Then there exists an m by m matrix A, m by k0 matrix B, n0
by m matrix C and k0 by n0 matrix D, which is called state-space realization of the
encoder, such that

1)1(
0

)1(
1

)(
0

)(
1 1),,(),,(−−−

−− +−=+== T
t

T
t

Ttt
m

Ttt
m BuT

tABussAssT
t SS LL

and T
t

T
t DuT

tCx +−= 1S . The generate matrix of this convolutional encoder is

BAIxCDxGDCBAC
m

11)()(),,,(−− −+==

Consider the convolutional encoder in Rel.6 turbo code depictured in Fig.15. The
encoder has minimal degree 3 and 1

12
1

01
1

1
1

20 ,, −−−− ==++= tttt
t

ttt ssssusss . Its 4 state
matrices are,

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1
1

,
000
101

,
1
0
0

,
011
100
010

6Re6Re6Re6Re llll
DCBA

 (*)

Figure 15 Constituent convolutional encoder of Rel.6

s s

R1-071127 9

Theorem 1[22] Let the matrices (A,B,C,D) be the state-space realization of a
convolutional encoder with minimal degree m. This encoder is tail-biting for any
information sequence of block size N≥m if and only if AN+Im is invertible.

It was stated in [4] that turbo encoder in Rel.6 may not offer tail-biting for
information sequence of size multiple of 7. In fact, we can prove that

Theorem 2 [22] For any recursive convolution encoder of minimal degree m there
exists a positive integer P such that this encoder gives no tail-biting termination for
some information sequences of size tP (t>0).

Proposition 1 [22] Let
6Re l

AA = be the matrix for the constituent encoder of the turbo
code in Rel.6 (see (*)). Then for any positive integer n=7q+i, 0≤i≤6,

⎩
⎨
⎧

≠
=

=+=+
0
00

iinvertible
i

IAIA m
i

m
n

Thus, by Theorem 1, any information sequence of size not a multiple of 7 can be tail-
biting encoded by the turbo encoder in Rel.6.

4.2 Tail-biting for 3GPP LTE turbo code with QPP interleaves
Let (A,B,C,D) in (*) be the state space realization of the 8 states convolutional
encoder used in turbo code of Rel.6. Then

I) Pre-compute the followings states for i=1,2,3,4,5,6

,
1
1
0

)(,
0
1
0

)(,
1
0
0

)(1
33,

1
32,

1
31,

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+= −−− IASIASIAS i

i
i

i
i

i

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+= −−−−

1
1
1

)(,
0
1
1

)(,
1
0
1

)(,
0
0
1

)(1
37,

1
36,

1
35,

1
34, IASIASIASIAS i

i
i

i
i

i
i

i

II: Pre-store the above 42 index-state pairs as a look-up-table LT(i,b(2)) = Si,b, where
b=1,2,3,4,5,6,7 and b(2) is the 3 bits binary representation of b. Moreover, let
LT(i,0)=0 state.

To handle any information block sizes from 40 to 6144 using the 160 (or 188) QPP
interleaves listed in Table 2 and Table 3 of [19], two major methods are available, namely
pruning and puncturing. In the following the tail-biting applications are given for these
two cases.

4.2.1 Tail-biting encoding using pruning technique for interleave

Pruning[12]: According to the pruning technique in Rel.6, if the information block
size L is not in the QPP list, than take the smallest size N in the list such that N>L.
The dummy bits are padded for k=L, L+1, …, N-1. Using size N QPP to interleave
the information sequence with the padded. After the interleaving, dummy bits are
pruned away from the output of the interleaved bits.

R1-071127 10

With pruning, both convolutional encoders of the turbo code encode the information
bits without padded dummy bits. In this case, one may use the following tail-biting
method. Consider information block u0, u1 ,…, un-1.

1. Compute m= n mod 7. If m=0, pad one more symbol uk=0 and let L=n+1 and
M=1, otherwise let L=n and M=m. Then the padded sequence becomes

u0, u1 ,…, un-1, uL-1

2. With 0 state encoding information symbols u0, u1,…,uL-1 (or interleaved
symbols

)1()0(
,,

−L
uu

ππ
L) to find the final state Sfinal (or S’final (do not store

the encoded symbols). Then use look-up table to find the initial state S0=LT(M,
Sfinal) (or S’0=LT(M, S’final))

3. Use S0 (or S’0) as initial state to encode u0,u1,…,uL-1 (or
)1()0(

,,
−L

uu
ππ

L)

□

4.2.2 Tail-biting encoding using shortening and puncturing
technique for interleave

Shortening and Puncturing [26 and 27]: According to the methods proposed in [26-
27], if the information block size L is not in the QPP list, take the smallest size N in
the list such that N>L and pad N-L 0 bit at the beginning of the information sequence.
Then, turbo encoder will encode the padded information sequence and its QPP-
interleaved sequence. After that the padded 0 systematic bits will be shortened. For
the check bits corresponded to the shortened bits, there are two methods proposed,
namely a) [26] puncture only the check bits (which are also 0) obtained from none
interleaved information sequence. The check bits of the padded bits from interleaved
information sequence will not punctured. This will case some rate loss but not the
performance loss; b) [26-27] puncture check bits obtained from both none interleaved
and interleaved information sequence. This will not cause rate loss but it will cause a
performance loss.

4.2.2.1 Tail-biting encoding without adding an extra bits outside the interleave

Since the sizes of the interleaves in Table 2 of the QPP list in [19] are not multiple of
7, one may use the following tail-biting method. Consider information block u0, u1 ,…,
un-1.

1. Find the smallest L in the list such that L≥ n and pad L-n 0 bit at the beginning
of the information sequence. Then the padded sequence becomes

u0, u1 ,…, un-1, un, ..., uL-1

2. With 0 state encoding information symbols u0, u1,…,uL-1 (or interleaved
symbols

)1()0(
,,

−L
uu

ππ
L) to find the final state Sfinal (or S’final (do not store

the encoded symbols). Then use look-up table to find the initial state S0=LT(M,
Sfinal) (or S’0=LT(M, S’final)

3. Use S0 (or S’0) as initial state to encode u0,u1,…,uL-1 (or
)1()0(

,,
−L

uu
ππ

L)

R1-071127 11

□

4.2.2.2 Tail-biting encoding with adding an extra bit outside the interleave

If the QPP list in Table 3 of [19] is used i.e. allows multiple of 7 interleave size, then
the following tail-biting method can be applied.

1. Find the smallest L’ in the list such that L’≥ n. and pad L’-n 0 bits at the
beginning of the information sequence. Then the padded sequence becomes

u0, u1 ,…, un-1, un, ..., uL’-1

2. Compute m= L’ mod 7. If m=0, pad one 0 bit to both none interleaved and
interleaved information sequence and let L=L’+1 and M=1, otherwise, no padding
and let L=L’ and M=m.

3. With 0 state encoding information symbols u0, u1,…,uL-1 (or interleaved symbols

)1()0(
,,

−L
uu

ππ
L) to find the final state Sfinal (or S’final (do not store the encoded

symbols). Then use look-up table to find the initial state S0=LT(M, Sfinal) (or
S’0=LT(M, S’final).

4. Use S0 (or S’0) as initial state to encode u0,u1,…,uL-1 (or
)1()0(

,,
−L

uu
ππ

L).

When the information block size is multiple of 7, this method will transmit 4 extra
bits outside the interleaved block.

5 References

[1] France Telecom, GET, Enhancement of Rel. 6 Turbo Code, 3GPP TSG RAN

WG1#43 R1-051310.

[2] Motorola, “Convolution Code Structure for E-AGCH,” 3GPP TSG-RAN2 #46
R1-050164.

[3] Motorola, France Telecom, GET, Orange, “EUTRA FEC Enhancements,”
3GPP TSG RAN WG1#44bis, R1-061050.

[4] HighDimension Ltd, “System impact of Rel’6 turbo coding tail-bits removal,”
R1-062157.

[5] Motorola, “E-UTRA DL Coding Performance for Control Channel,” 3GPP
TSG RAN1 #47-bis, R1-70066.

[6] Broadcom, “Tail-biting encoding for 3GPP LTE turbo code of arbitrary
number of information bits,” 3GPP TSG RAN WG1 #47 R1-063242.

[7] Motorola, “Eliminating tail bits in LTE channel coding,” 3GPP TSG RAN
WG1 #47bis R1-070058.

[8] DVB-RCS and DVB-RCT.

[9] IEEE 802.16-2004, " IEEE Standard for Local and Metropolitan Area
Networks Part 16: Air Interface for Fixed Broadband Wireless Access
Networks".

R1-071127 12

[10] DVB-RCS, "Interaction Channel for Satellite Distribution Systems", ETSI EN
301 790, v1.2.2, pp. 21-24, December 2000.

[11] DVB-RCT, "Interaction Channel for Digital Terrestrial Television", ETSI EN
301 958, v1.1.1, pp 28-30, August 2001.

[12] 3GPP TS 25.212 V6.8.0 (2006-06)

[13] E. Rosnes and O. Ytrehus, “Improved algorithms for the determination of
turbo-code weight distributions,” IEEE Transactions on Communications, Vol
53, No. 1, pp. 20 – 26, Jan. 2005.

[14] J. B. Anderson and S. M. Hladik, “Tailbiting MAP Decoders,” IEEE JSAC,
VOL. 16, NO. 2, Feb. 1998

[15] C. Weiß, C. Bettstetter and S. Riedel, “Code Construction and Decoding of
Parallel Concatenated Tail-Biting Codes,” IEEE Trans on Information
Theory,Vol.47, No.1, pp.366-386, Jan. 2001

[16] C. Berrou, Y. Saouter, C. Douillard, S. Kerouédan, and M. Jézéquel,
“Designing good permutations for turbo codes: towards a single model,”2004
IEEE International Conference on Communications (ICC), Vol.: 1,pp: 341-345,
20-24 June 2004.

[17] 3GPP TS 25.101 V6.14.0 (2006-12), A.4

[18] A. J. Viterbi, “An Intuitive Justification and a Simplified Implementation of the
MAP Decoder for Convolutional Codes,” IEEE JSAC, VOL. 16, NO. 2, pp.
260-264 FEBRUARY 1998.

[19] Ericsson and Motorola, “QPP interleaver parameters,” 3GPP TSG RAN WG1
#47bis R1- 070484.

[20] Texas Instruments, “Turbo Code Tail Methods,” 3GPP TSG RAN WG1 #47
bis R1-070253

[21] Nokia, “Performance of tail-biting turbo codes,” 3GPP TSG RAN WG1 #47bis
R1-070376

[22] Broadcom, “Tail-biting encoding for 3GPP LTE turbo codes
of arbitrary number of information bits and performance comparison,” 3GPP
TSG RAN WG1 #47bis R1-070544

[23] J. L. Massey and M. K. Sain, “Codes, automata, and continuous systems:
Explicit interconnections,” IEEE Trans. Automat. Contr., vol. AC-12, no. 6, pp.
644–650, 1967.

[24] R.J. McEliece. The Algebraic Theory of Convolutional Codes. In Handbook of
Coding Theory, R. Brualdi, W.C. Human and V. Pless (eds.). Elsevier Science
Publishers, Amsterdam, The Netherlands,1998

[25] J. Rosenthal, and E. V. York, “BCH Convolutional Codes,” IEEE Trans. on
Inform. Theory, Vol.45, No.6, PP.1833-1842, Sept. 1999

[26] Motorola, Contention-free Interleaver designs for LTE Turbo Codes, 3GPP
TSG RAN WG1 #47bis R1-070054

R1-071127 13

[27] Ericsson, Performance Comparison of LTE Turbo Internal Interleaver
Proposals, 3GPP TSG-RAN WG1 #47bis R1-070464

