3GPP TSG RAN WG1 #47bis
 R1-070254
Sorrento, Italy, January 15 – 19, 2007
Source:
Texas Instruments
Title:
Parallel Turbo Decoder Options
Agenda Item:

6.4
Document for:
Discussion
1. Introduction
In [1], the channel coding techniques are defined for 3GPP. Turbo codes are one of those techniques used to provide error control. In [2, 3, 4, 5, 6, 7, 8, 9] possible changes are discussed, such as replacing the existing interleaver with a new contention free interleaver in order to increase the throughput of the decoder. The new interleaver should have equal or greater performance than the existing interleaver to be acceptable.
One common decoder implementation is to divide the block into smaller windows and process the windows in parallel. To avoid creating a memory bottleneck, one approach is to access the interleaved data with respect to the parallelism associated with contention free interleavers. Contention free interleavers allow parallel decoder functionality. The current 3GPP interleaver allows parallelism up to 20 [10,11].

In this contribution, we show another approach to solve the throughput problem. The approach is with an architectural change that does not take into account the properties of contention free interleavers as done on [10, 11]. The change consists of dividing the single data memory into smaller physical memories, adding buffers and control logic to both the input and output of the memories. This approach allows parallel decoder functionality without any loss in performance or supported block sizes.
2. Proposed Approaches
2.1 Overview
Turbo decoders are iterative decoders. Each iteration requires two maximum a posteriori (MAP) decoder block functions. The first MAP decoder processes the non-interleaved data and the second MAP decoder processes the interleaved data as shown in Figure 1. Decoder implementations are typically implemented with only a single MAP decoder. The data input to the MAP decoder is either non-interleaved or interleaved data depending on which MAP decoder function it is processing. The data accessed is stored in a memory that contains the entire block. With one MAP decoder only one physical memory is needed.

[image: image1.emf]MAP

decoder

I

MAP

decoder

I’

I

.

S1

P1

P2

Figure 1 – Functional Block of a Turbo Decoder

To increase the throughput of the MAP decoder it is possible to execute m MAP decoders in parallel. Each MAP decoder would process a smaller portion of the entire block and this technique is called “windowing”. This requires that the one main memory be broken into j smaller memories as shown in Figure 2 where
[image: image2.wmf]m

j

³

. The total number of memory locations with the j memories should be approximately the same as the one single memory.

[image: image3.emf]big ram

s

m

a

l

l

r

a

m

1

s

m

a

l

l

r

a

m

2

s

m

a

l

l

r

a

m

3

s

m

a

l

l

r

a

m

j

...

Figure 2 – Breaking the Big Ram into j Smaller Rams

This windowing technique works well with the non-interleaved data because it is possible to partition the window sizes so that each MAP reads data out of a different memory every cycle. However, this technique does not work well with the interleaved data. This is because the 3GPP interleaver coefficients can be considered random. Multiple memory requests to the same memory cause a memory conflict. Typically, memories only support one request per cycle; therefore, memory conflicts will cause a stall in the MAP decoder while waiting additional cycles to access the requested data. During the stall, the MAP decoder is not enabled (i.e. it is halted).

For example as shown in Figure 3, if there are m MAP decoders requesting m interleaver coefficients every cycle; then there is no guarantee that the m requests will be to different rams. There is a possibility that multiple requests could be made to the same ram. This causes a stall condition because it is necessary to wait additional cycles to request data from the ram multiple times. For an implementation with m=4 MAP decoders and j=4 rams; the average and maximum stall rates for all the 3GPP block sizes are 11% and 19% respectively.

[image: image4.emf]MAP

RAM

MAP 1

MAP 2

MAP m

j

 smaller

RAMs

.

.

.

Figure 3 – Going from 1 MAP/1 RAM to m MAPs/j RAMs
2.2 Memory Buffering Architectural Approach
The main goal of this approach is to break the data ram into j smaller rams and execute m MAP decoders in parallel; where
[image: image5.wmf]m

j

³

. This allows each of the j rams a potential of one request per cycle. Single access rams typically are the smallest and cheapest form of memory. Each of the smaller rams will be accessed independently from each other. This approach introduces stalls to the MAP decoders. But if the stall rate is low; then it is possible to increase the clock ram of the design to compensate for the stalls. For example, if m MAP decoders with j=infinite number of rams can achieve the required LTE throughput running at a clock rate of y MHz with zero contentions. But in reality it is necessary to set j to a small finite number and this value of j could give a 1% stall rate. Then it is necessary to clock the MAP decoders 1% faster to compensate for the 1% stall rate. This approach allows LTE to continue to use the existing 3GPP interleaver.
This memory buffering approach adds a state machine that controls the requests to each of the j rams. The state machine would prevent multiple requests to any of the individual j rams in a single cycle. The state machine would buffer the incoming accesses until the ram was free to accept the request. The state machine would also buffer the outputs from the individual rams until the entire set of m accesses are available. This architecture is shown in Figure 4. Each of the j rams has its own input buffer. This input buffer would buffer the multiple requests for the same ram. This would allow each of the individual rams only 1 access per cycle.
The input selector and control block would review the m requests, determine which rams are requested, and send those requests to the respective input buffers for that specific ram.
The output buffer would store the outputs from the individual rams. It would organize the data so that the data was once more in groups of m. This data would then be sent to the m MAP decoders.

[image: image6.emf]Input

buffer1

.

.

.

small ram 1

Input

buffer2

small ram 2

Input

buffer j

small ram j

Output

buffer

Input

Selector

and

Control

m m

stall

Figure 4 – j Rams With Both the Input and Output Buffers
	Cycle
	Ram requests
	Access ram 1
	Access ram 2
	Access ram 3
	Access ram 4
	Access ram 5
	Access ram 6
	Output buffer’s output

	1
	1,1,2,3
	Yes
	Yes
	Yes
	No
	No
	No
	Stall

	2
	1,6,2,4
	Yes
	Yes
	No
	Yes
	No
	Yes
	1,1,2,3

	3
	6,3,4,3
	Yes
	No
	Yes
	Yes
	No
	Yes
	1,6,2,4

	4
	1,2,4,2
	Yes
	Yes
	Yes
	Yes
	No
	No
	6,3,4,3

	5
	
	No
	Yes
	No
	No
	No
	No
	1,2,4,2

Table 1 – Example of Buffering with j=6 and m=4 MAP decoders

Table 1 shows an example of the input and output buffering for m=4 requests per cycles and j=6. The numbers in the second column of the table represent which rams are requested each cycle. The first cycle requires two requests from ram 1, one request from ram 2, and one request from ram 3. Ram 1 can only service 1 request per cycle; therefore, the second request must be buffered in the input buffer 1 block. This causes the output buffer to output a stall. Rams 2 and 3 can be accessed during cycle 1. The output buffer stores the results from rams 1, 2, and 3. Since not all 4 requests occurred during this cycle, a stall signal is sent to the 4 MAP decoders.
During the second cycle rams 1, 2, 4, and 6 are accessed. The ram 1 access is the second requested access from cycle 1. The second cycle request for 1 is now buffered in the input buffer. Now, this completes the 4 requested rams from the first cycle and the 4 outputs can now be sent to the 4 MAP decoders. The data from rams 2, 4, and 6 are buffered in the output buffer.
During the third cycle rams 1, 3, 4, and 6 are accessed. The ram 1 access is the buffered request from cycle 2. Now, this completes the 4 requested rams from the second cycle and 4 outputs can now be sent to the 4 MAP decoders. The data from rams 3, 4, and 6 are buffered in the output buffer.

This sequence of operations continues until all input requests have been serviced. In this example, it took 5 cycles to complete the 4 sets of requests; therefore the stall rate is 5/4=1.2 or 20%.
2.3 Buffering Results

The left plot in Figure 5 shows the maximum and average stall rates for all the 3GPP block sizes for m=4 and m=8 for various values of j. The simulations assumed m ram requests per cycle for m MAP decoders running in parallel. The stall rates curves have an exponential decay. The sweet spot in the curves is at j=16. The maximum stall rate for m=4 and j=16 is 3.8% and the average stall rate is 1.5%. Increasing j further only gives slightly lower stall rates. For example, if the turbo decoder could achieve the LTE throughput with zero contentions (j=infinity) at 250 MHz, then for j=16 the decoder would need to run at 260 MHz.
The right plot in Figure 5 shows the number of input and output buffer depths that are required for the different values of j. This information can be used to help determine the hardware cost of this approach. The number of buffers ranges from 38 down to 6 for m=4. For j=16, the buffer depth is 9.
 [image: image7.emf]0 5 10 15 20 25 30 35

0

0.05

0.1

0.15

0.2

0.25

number of j banks

stall rate

maximum and average stall rates

m=4 maximum stall rate

m=4 average stall rate

m=8 maximum stall rate

m=8 average stall rate

[image: image8.emf]0 5 10 15 20 25 30 35

5

10

15

20

25

30

35

40

45

number of j banks

buffer size

of registers per bank

m=4

m=8

Figure 5 - Multiple Ram Bank Results
3. Conclusions

Assuming the current 3GPP turbo interleaver, there are multiple alternatives to achieve the high peak throughput requirements of LTE. For example, some contention free implementation schemes were demonstrated in [10, 11]. This paper described another architectural approach that keeps the existing interleaver and performance without exploiting the contention free characteristic of the 3GPP turbo interleaver. This approach shows that breaking the large memory into a respectable number of smaller memories results in an average stall rate of approximately 1% to 3% for up to a parallelism factor of 8. Furthermore, the stall rate can be compensated by increasing the clock rate.
The approach given in this contribution may also be used synergistically with the contention free approach in [10, 11]. This is especially beneficial for some configurations that do not permit the contention free implementation. Since there exists several feasible implementation alternatives based on the current 3GPP turbo interleaver, we recommend that any change to the current 3GPP interleaver must have at least equivalent performance.
References
[1] 3GPP TS 25.212 v6.4.0 (2005-03): “Multiplexing and Channel Coding (FDD) (Release 6)”.

[2] 3GPP TR 25.814 v1.0.1 (2005-11): “Physical layer aspects for evolved UTRA (Release 7)”.

[3] “An ARP Base 4 hardware savings, flexible granularity and flexible parallelism ARP interleaver suitable for all possible block sizes in 3GPP LTE Turbo Codes”, Broadcom:
http://list.3gpp.org/scripts/wa.exe?A2=ind0611&L=3gpp_tsg_ran_wg1&T=0&O=A&I=-3&P=65425
[4] “Quadratic Permutation Polynomial Interleaver Designs for LTE Turbo Coding”, Ericsson:
http://list.3gpp.org/scripts/wa.exe?A2=ind0611&L=3gpp_tsg_ran_wg1&T=0&I=-3&P=65884
[5] ”France Telecom QC interleaver”, France Telecom:
http://list.3gpp.org/scripts/wa.exe?A2=ind0612&L=3gpp_tsg_ran_wg1&T=0&O=A&I=-3&P=584
[6] “IBP interleaver for turbo coding and shortening position assigning algorithm”, ITRI:
http://list.3gpp.org/scripts/wa.exe?A2=ind0612&L=3gpp_tsg_ran_wg1&T=0&O=A&I=-3&P=2416
[7] “A Contention-free interleaver for turbo codes”, Mitsubishi:
http://list.3gpp.org/scripts/wa.exe?A2=ind0612&L=3gpp_tsg_ran_wg1&D=0&I=-3&O=A&T=0&P=1646
[8] “Contention-free Interleaver designs for LTE Turbo Codes”, Motorola:
http://list.3gpp.org/scripts/wa.exe?A2=ind0611&L=3gpp_tsg_ran_wg1&T=0&I=-3&P=65292
[9] “QPP Parameters for Evaluation”, Qualcomm:
http://list.3gpp.org/scripts/wa.exe?A2=ind0612&L=3gpp_tsg_ran_wg1&T=0&O=A&I=-3&P=187
[10] R1-063265, “Parallel Decoding Method for the Current 3GPP Turbo Interleaver”, Samsung, Nortel.
[11] R1-063357, “Interleaver for LTE turbo code”, Panasonic.

_1226840480.vsd
big ram

small ram 1

small ram 2

small ram 3

small ram j

...

_1228137122.vsd
MAP

MAP 1

MAP 2

...

MAP m

j
 smaller RAMs

RAM

_1228137209.unknown

_1228137340.vsd
small ram 1

Input buffer1

Output buffer

Input
Selector and Control

...

Input
buffer j

Input buffer2

small ram 2

small ram j

m

m

stall

_1228136930.unknown

_1226840404.vsd
MAP
decoder

I

MAP
decoder

I’

I

.

S1

P1

P2

